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Abstract

The aim of Feature Subset Selection – FSS – algorithms is to select a subset of features from the original
set of features that describes a data set according to some importance criterion. To accomplish this task,
FSS removes irrelevant and/or redundant features, as they may decrease data quality and reduce several of
the desired properties of classifiers induced by supervised learning algorithms. As learning the best subset
of features is an NP-hard problem, FSS algorithms generally use heuristics to select subsets. Therefore, it is
important to empirically evaluate the performance of these algorithms. However, this evaluation needs to be
multicriteria, i.e., it should take into account several properties. This work describes a simple model we have
proposed to evaluate FSS algorithms which considers two properties, namely the predictive performance of
the classifier induced using the subset of features selected by different FSS algorithms, as well as the reduction
in the number of features. Another multicriteria performance evaluation model based on rankings, which
makes it possible to consider any number of properties is also presented. The models are illustrated by their
application to four well known FSS algorithms and two versions of a new FSS algorithm we have developed.

Key Words: Feature Selection, Machine Learning, Multicriteria Evaluation.

1 Introduction

Supervised learning algorithms take as in-
put a training set of N classified instances
{(x1, y1), ..., (xN , yN )} for some unknown func-
tion y = f(x), where the xi values are typically
vectors of the form (xi1, xi2, ..., xiM ), and xij de-
notes the value of the j-th feature (or attribute)
Xj of xi. For classification purposes, the y values
are drawn from a discrete set of NCl classes, i.e.,

y ∈ {C1, C2, ..., CNCl
}. From that training set, a

learning algorithm induces a classifier, which is
a hypothesis (model) h about the true unknown
function f . Given new x values, the classifier
predicts the corresponding y values. Although
in theory a greater number M of features should
provide a greater discriminating power, this may
not happen in the presence of irrelevant and/or
redundant features, since such features frequently
confuse the learning system. Feature Subset Se-
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lection — FSS — algorithms can be used as a
preprocessing step aiming to remove features such
that the prediction performance of the classifier h
improves or is maintained inside reasonable lim-
its considering the reduction in the number of
features. Furthermore, by removing redundant
and/or irrelevant features, FSS may provide a
better understanding of the underlying unknown
process, i.e. y = f(x), which generates the data.
A wide variety of FSS algorithms have been pro-
posed and they can be evaluated in various ways.
In fact, the FSS evaluation issue is a complex and
multidimensional task.

In this work we describe a simple model we have
proposed that takes into account two aspects,
namely the predictive performance of the classi-
fier induced using the subset of features selected
by different FSS algorithms, as well as the re-
duction in the number of features. The proposed
model has a simple graphical representation, and
is illustrated by its application to four well known
FSS algorithms and two versions of a new FSS
algorithm we have developed. This work also
presents a multicriteria performance evaluation
model based on rankings, enabling us to consider
any number of criteria in the evaluation.

This work is organized as follows: Section 2
briefly reviews the FSS problem. Section 3
presents the FSS algorithms based on Fractal Di-
mension we have proposed. Section 4 presents the
proposed graphical evaluation model. Section 5
reports the results with six FSS algorithms in 11
data sets from UCI using the graphical evaluation
model as well as the ones obtained using a model
based on rankings. Section 6 presents conclusions
and future work.

2 The Feature Subset Selec-
tion Problem

The learning task can be broadly divided into two
sub-tasks: 1) to decide which attributes should be
considered to describe the concept and 2) to de-
cide how to combine these attributes. Thus, the
selection of important attributes and the elimina-
tion of the irrelevant and/or redundant ones con-
stitute an important problem in machine learn-
ing since, in practice, most learning algorithms
are confused by the presence of irrelevant and/or
redundant attributes.

The aim of feature subset selection is to extract

as much information as possible from a given
data set by keeping the smallest number of fea-
tures that describe the data set as well as, or
even better, than the original set of features do.
This is achieved by removing irrelevant and/or re-
dundant features according to some importance
criterion. The FSS goal can be formalized as
follows [20]: let X ′ ⊂ X be a subset of fea-
tures from X and f ′(x′) be the values associated
with vectors corresponding to X ′. The aim of
FSS is to select a minimum feature subset X ′

such that P(C|y = f ′(x′)) ≈ P(C|y = f(x)),
where P(C|y = f ′(x′))) and P(C|y = f(x)) are
the probability distributions of the NCl

possible
classes given feature values of X ′ and X, respec-
tively. This minimum subset X ′ is named the
optimal subset [9]. Some advantages associated
with FSS in supervised learning are related to
reducing the potential hypothesis space; improv-
ing data quality, thus increasing the efficiency of
the learning algorithm; improving predictive ac-
curacy, and enhancing the comprehensibility of
the induced classifier [20, 2].

There are two main FSS approaches that are ex-
ternal to the learning algorithm: the filter and
the wrapper approaches. The main difference be-
tween them is related to the interaction of the FSS
algorithm with the learning system [7]. On the
one hand, FSS is performed as a separate process
in the filter approach, which occurs before the
application of the learning algorithm itself. The
basic idea is to filter features before the induc-
tion takes place based on general characteristics
from the data set, in order to select some features
and discard others. Thus, filter methods are inde-
pendent from the learning algorithm that simply
takes as input the filtered data set. On the other
hand, the wrapper approach uses the induction
algorithm itself as a black box to evaluate can-
didate feature subsets, repeating the process on
each feature subset until a stopping criterion is
met. In general, wrappers are computationally
more expensive than filters.

Regarding to feature evaluation, FSS algorithms
can perform it in two main ways: individual eval-
uation of each feature and subset evaluation. In-
dividual evaluation is computationally less expen-
sive, as this approach assesses individual features
and assigns them scores according to their degree
of importance to the class. Nevertheless, this ap-
proach is incapable of detecting redundant fea-
tures because these features are likely to have
similar scores. The subset evaluation approach
can handle both feature relevance and feature re-
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dundancy. However, unlike individual evaluation,
in this approach evaluation measures are defined
against a subset of features, thus exhibiting a high
computational cost. Regardless of the approach
(filter or wrapper) or the used evaluation method
(individual or subset evaluation), FSS algorithms
need to know what the meaning of a good at-
tribute is, i.e., to answer the following question:
The feature is important related to what? Many
importance measures have been proposed in the
literature, and they can be broadly divided into
five categories: dependency, consistency, informa-
tion, distance and classifier accuracy rate [13, 4].

Most FSS methods for supervised learning con-
sider as importance criterion feature relevance to
determine the class attribute. However, it has
been shown that feature relevance alone is insuf-
ficient for efficient FSS. Therefore, it is also nec-
essary to explicitly treat feature redundancy [20].
To this end, we have proposed a FSS algorithm
that treats the problem of redundancy using as
importance criterion the Fractal Dimension of the
data set, described next.

3 Fractal Dimension-Based
Filter

Many objects that have a fractal behavior can
be found in nature, such as clouds, leaves, flow-
ers, topographies, mountains’ chains, and others.
Moreover, real world data sets frequently behave
like statistically self-similar fractals. Therefore, it
is natural the idea of applying concepts from frac-
tal theory to support the analysis of such data
sets. The use of the concept of Fractal Dimen-
sion — FD — is associated with the existence of
redundancy in the data sets and with the possi-
bility of these data sets to be well approximated
by smaller dimensions. The main idea is to use
the FD of the data set, which is relatively not af-
fected by redundant attributes, to determine how
many and which are the non redundant attributes
according to the FD criterion. There are many
ways of calculating the FD measure. For statisti-
cally self-similar fractals, as real world data sets,
the FD can be obtained by way of the Correla-
tion Fractal Dimension D2, which can be calcu-
lated using the Box-Count Plot method [5]. This
method consists in embedding the data set with a
point set in an M -dimensional space, with M -grid
cells of side r. Afterwards, focusing on the i-th
cell, the number of points that fall into each cell

(Cr,i) is counted, and the value S2(r) =
∑

i Cr,i
2

is computed. The Correlation Dimension D2 is
defined by D2 = ∂log(

∑
i S2(r))

∂log(r) , r ∈ [rmin, rmax].
In theory, exactly self-similar fractals are infinite.
In practice, real world data sets which present
a finite number of points are considered statis-
tically self-similar fractals for a determined in-
terval of scales r ∈ [rmin, rmax], if they fulfill a
construction rule in this interval. Therefore, the
intrinsic dimension of a specific data set may be
measured by the slope of the linear part of the
resulting graph obtained from plotting S2(r) for
different values of r [18]. In this work, the cor-
relation dimension D2 will be simply denoted as
fractal dimension FD.

Our algorithm, called Fractal Dimension-Based
Filter —FDimBF — is based on a recently pro-
posed framework for FSS that decouples the se-
lection of important attributes into two separate
process: the analysis of relevance that is car-
ried out as the first step of the process, and the
analysis of redundancy carried out as the second
step [20]. Figure 1 shows the general framework
of FDimBF, which is described in details in [10].

Two different versions of the FDimBF algorithm
were implemented to accomplish the relevance
analysis. The first one performs this analy-
sis using an information based measure, specifi-
cally the information gain ratio — FDimBF(1).
The second one — FDimBF(2) — uses a dis-
tance based measure which ranks features using
the Manhattan distance. For both FDimBF(1)
and FDimBF(2) the redundancy analysis is car-
ried out by the Fractal Dimension Reduction —
FDR — algorithm [18]. The main idea of FDR is
to discard features that have little influence over
the fractal dimension of the data set, since the FD
is relatively not affected by redundant features.

4 Evaluation Model for Fea-
ture Subset Selection Algo-
rithms

When we apply FSS algorithms we would like to
reduce the number of features needed for learn-
ing. This means that at least we have to consider
two properties (or aspects) simultaneously: a re-
duction in the number of features versus the ac-
curacy of the induced classifier using the subset
of selected features. To this end, we have pro-
posed an evaluation model for FSS algorithms’
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Figure 1: General framework of FDimBF

performance which considers these two main is-
sues of the FSS problem: 1) predictive accuracy
of the induced classifier using all features from
the original data set and the ones induced using
the subset of features selected by each FSS algo-
rithm, and 2) size of the subset of selected fea-
tures in relation to the original data set. In this
framework, (illustrated in Figure 2) where EFS
stands for the classifier’s error without FSS and
EMC represents the error of the data set’s ma-
jority class whenever this error is less than 50%,
otherwise EMC is set to 50%, we place the FSS
algorithms´ performance into five categories: ex-
cellent (444), very good (44), good (4), poor (♦)

and very poor (∇). Using this model, which en-
ables showing a neat visualization of results to the
user, both versions of FDimBF were empirically
evaluated and compared to four representative fil-
ter based FSS algorithms. The experiments are
reported in the next section.

● ● ●

●

●

% Selected Att.

50%

100%
(N)

EFS = Error without FSS

(EM
C − EFS) / 2

EM
C

Error

Excellent

Very Good

Poor

Good

Very Poor

Figure 2: Evaluation framework for FSS algo-
rithms

5 Experiments and Discus-
sion

Table 1 describes the characteristics of the six
FSS algorithms, where lines 2 and 3 show, re-
spectively, the algorithms that perform individual
evaluation and/or subset evaluation of features.
Lines 4 to 7 show the importance measure con-
sidered during the attributes’ evaluation process.
In this work, 11 data sets from UCI [14] were se-
lected for the empirical study. The main charac-
teristics of the data sets used in the experiments
are described in the second column of Table 2,
which shows the number of examples (#Ex.), at-
tributes (#Att.) and the EMC of each data set.
Except for data sets Satimage, Segment, Vehicle
and Waveform which have respectively 7, 7, 4 and
3 class labels, the other data sets have only two
classes.

Two of the chosen FSS algorithms perform in-
dividual feature evaluation — ReliefF [8] and
FCBF (Fast Correlation-Based Filter) [20]. The
other two select important features using sub-
set evaluation — CFS (Correlation-Based Feature
Selection) [6] and CBF (Consistency-Based Fil-
ter) [12]. ReliefF searches for nearest neighbors of
examples with different class labels, and features
are weighed according to how well they differen-
tiate these examples. Similar to FDimBF, FCBF
selects features in two steps, using an informa-
tion measure in the second step to remove redun-
dant features. CFS evaluates the goodness of a
subset of features by considering the individual
predictive ability of each feature and the degree
of correlation among them. Subset evaluation is
also performed by CBF according to their incon-
sistency related to the class, searching for subsets
that separate data into clusters such that each
cluster has a large number of examples with the
same class value. All algorithms were executed
with default parameters values. Except for the
FDimBF algorithm, they are available at Weka’s
environment [19]. Experiments were conducted
following the four steps shown in Figure 3.
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ReliefF CFS FCBF CBF FDimBF(1) FDimBF(2)

Individual × × × ×
Subset × × × × ×

Information × × ×
Distance × ×

Dependency × ×
Consistency ×

Table 1: Characteristics of FSS algorithms

Data Sets

All Attributes

FS

1

2

Selected
Attributes

Results

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............
..........

FDimBF*

ReliefF

FCBF*

CFS*

CBF

1 3 4

Construction
of

Models

Evaluation
of

Results

Figure 3: Experimental setup

In step 1, data sets were cleaned and prepared
for the next step. The cleaning task consisted
of removing unknown values conditioned to the
major concentration of them in examples and/or
attributes. From the total of 11 data sets, only
two of them were data cleaned: Breast Cancer,
resulting in 683 examples from the original of 699
examples and the same number of attributes, and
Hungarian for which 3 attributes and 33 exam-
ples were removed, totalizing 261 examples and
10 attributes — Table 2. In step 2, subsets of
attributes were selected from the original set of
attributes considering both versions of the pro-
posed algorithm FDimBF and the other four FSS
algorithms — Table 1. Algorithms marked with
∗ in Figure 3 deal with both problems: relevance
and redundancy of attributes. In step 3, classi-
fiers were constructed using as input the subset
of selected attributes in the previous step. To
this end, the C4.5 [17] learning algorithm, exe-
cuted with its default values, was used. As for
real world data prior knowledge about important
features is not generally available, predictive ac-
curacy of the constructed classifiers is commonly
used as an indirect measure to evaluate the qual-
ity of the selected features. Thus, in final step
4, results were evaluated by estimating the er-
ror rate of the classifiers induced by C4.5 using
10 fold cross-validation. To support this task,
we used the SNIFFER environment for manag-
ing experiments, which is part of the DISCOVER
project1 [16, 1]. The algorithms’ performance for
the 11 data sets according to the framework pro-

posed in Section 4 are presented in Table 2.

As can be observed in Table 2, according to
the proposed evaluation model — Figure 2 —
both versions of FDimBF were the ones that
obtained the total greatest number of excellent
and very good performances, 9 out of 11. Al-
gorithms CFS and CBF obtained respectively 8
and 7 excellent or very good performances, fol-
lowed by 4 from FCBF. Poor performances oc-
curred uniformly among all considered FSS al-
gorithms, and only 3 of them presented one very
poor performance each: ReliefF and both versions
of FDimBF. Regarding the number of selected im-
portant features, ReliefF chose all features in 8
of the 11 data sets. In fact, only both versions
of FDimBF always promoted a reduction on the
number of selected features for all data sets as
shown in the last line of Table 2.

Therefore, under the proposed evaluation model,
from the 66 considered cases (11 data sets × 6
FSS algorithms), 16 were excellent, 21 very good,
7 good, 4 poor, 3 very poor and 15 presented
as subset of selected features the original ones.
Thus, 66.67% of the cases were considered excel-
lent, very good or good; 22.73% of the selected
subsets were equal to the original set of features,
and only 10.61% showed a poor or very poor per-
formance. Hence, the majority of the FSS al-
gorithms contributed to improving both the re-
duction in the quantity of features and the ac-
curacy of the constructed models under the pro-

1A computational environment being developed at the Laboratory of Computational Intelligence — LABIC.
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#Ex. #Att. EMC ReliefF CFS FCBF CBF FDimBF(1) FDimBF(2)
#1 Breast Cancer 683 9 34.48 — — — 444 444 444
#2 Bupa 345 6 42.03 ∇ ♦ ♦ ♦ ∇ 4
#3 German 1000 24 30.00 — 44 444 444 444 444
#4 Hungarian 261 10 36.05 — 444 444 444 44 444
#5 Ionosphere 34 351 35.90 4 44 4 44 44 44
#6 Pima 769 8 34.98 — 44 — — 44 ∇
#7 Satimage 4435 36 75.80 — 444 — 444 44 44
#8 Segment 2310 19 85.70 4 44 4 44 44 44
#9 Sonar 208 60 46.60 — 444 44 44 ♦ 44
#10 Vehicle 846 18 74.20 — 4 — — 44 44
#11 Waveform 5000 21 66.10 — 444 444 4 44 44
Excellent (444) 0 4 3 4 2 3
Very Good (44) 0 4 1 3 7 6
Good (4) 2 1 2 1 0 1
Poor (♦) 0 1 1 1 1 0
Very Poor (∇) 1 0 0 0 1 1
All Selected 8 1 4 2 0 0
Attributes (—)

Table 2: Data sets and performance of algorithms according to the percentage of selected attributes versus model’s error

posed framework to evaluate the performance of
FSS algorithms.

Although the proposed evaluation model gives a
global idea about the behavior of FSS algorithms
regarding its two main aspects, i.e. the classifiers’
predictive performance allied to a smaller num-
ber of features, it would be interesting to suggest
an order of preference among them. One way of
doing this is to consider, for all FSS algorithms
we would like to compare, the ranking defined
by each individual property (or aspect) we want
to evaluate, and try to combine the individual
rankings into a final one. The main advantage
of using rankings is the possibility of considering
different measures in different scales. By using
rankings, the numerical value of a measure is not
taken into account, but only the ordering they
define [15, 3]. Thus, in the evaluation problem of
FSS algorithms it is possible to directly compare
the predictive performance and the number of se-
lected features, as well as any other performance
measures.

The main idea of using rankings for multicrite-
ria evaluation can be described as follows: first, a
rank of FSS algorithms is constructed separately
for each aspect, the best performing algorithm
obtaining rank 1, the second best rank 2, and so
forth. In case of ties, average ranks for all tied al-
gorithms are assigned. Afterwards, the following
very simple method can be used to combine indi-
vidual rankings: for each FSS algorithm, its in-
dividual ranking for each aspect is averaged, and
the average ranking is used to order the FSS algo-
rithms. This final ordering can be interpreted as
a consensus of the performance of FSS algorithms
on two (or any number) of aspects we would like
to consider.

In our case, in order to compare both aspects, pre-
dictive classifier performance and the number of
features selected for each algorithm in each data
set, we start by calculating the algorithms’ aver-
age error rate using the selected features as well
as the number of selected features. In the sec-
ond phase, we proceed to construct a ranking on
the basis of this performance information, and
finally we calculate the average ranking of each
algorithm in all data sets. In other words, let Ei

j

be the estimated error rate of algorithm j using
the features selected from data set i, and Ai

j be
the number of features selected by algorithm j
from data set i. In the first case, we order the Ei

j

values for each data set i, and assign the corre-
sponding ranking position ei

j . In case of a draw,
i.e. Ei

j = Ei
k, we assign the averaged ranking

position for the tied algorithms j and k. After-
wards, we calculate the average ranking of each

algorithm as ēj =
∑

i ei
j

n , where n is the number
of data sets, 11 in our case. Similarly for Ai

j , we
calculate the ai

j rankings and the average ranking

āj =
∑

i ai
j

n . Tables 3 and 4 show the results. Due
to lack of space, we only show the average values
ēj and āj . Individual measures Ei

j and Ai
j for

each algorithm and data set can be found in [11].

In these tables, the first column identifies the al-
gorithm, and the following 11 columns the rank-
ings for each data set i. For example, column e1

j

in Table 3 refers to data set #1 Breast Cancer —
Table 2. For this data set, there are two draws
in the first and second positions for both versions
of FDimBF. Thus, the score of both algorithms
is given by 1+2

2 = 1.5. Moreover, there are three
draws in positions 4 to 6, and the score of these
algorithms is given by 4+5+6

3 = 5. Finally, the
last two columns of Table 3 show, respectively,



Inteligencia Artificial Vol. 10, No32, 2006 15

Algorithmj e1
j e2

j e3
j e4

j e5
j e6

j e7
j e8

j e9
j e10

j e11
j ēj R(ēj)

ReliefF 5 2 5 4.5 2.5 2 2.5 1.5 2 2 3 2.9 1.5
CFS 5 4 6 1 1 4 4 4 1 4 1 3.2 4
CBF 5 4 3.5 3 2.5 2 2.5 1.5 4 2 2 2.9 1.5
CBF 3 4 3.5 4.5 4 2 1 3 3 2 4 3.1 3

FDimBF(1) 1.5 6 1 6 6 5 5.5 5.5 6 5.5 5.5 4.9 6
FDimBF(2) 1.5 1 2 2 5 6 5.5 5.5 5 5.5 5.5 4.0 5

Table 3: Ranks for error rate on each data set

Algorithmj a1
j a2

j a3
j a4

j a5
j a6

j a7
j a8

j a9
j a10

j a11
j āj R(āj)

ReliefF 5 5.5 6 6 5.5 5 5.5 5.5 6 5 6 5.55 6
CFS 5 2 1 1.5 4 1.5 4 3 4 3 4 3 3

FCBF 5 2 4.5 5 5.5 5 5.5 5.5 5 5 5 4.82 5
CBF 3 2 4.5 4 3 5 3 4 3 5 3 3.59 4

FDimBF(1) 1.5 4 2.5 1.5 1 1.5 1.5 1.5 1 1.5 1.5 1.73 1
FDimBF(2) 1.5 5.5 2.5 3 2 3 1.5 1.5 2 1.5 1.5 2.32 2

Table 4: Ranks for percentage of selected features on each data set

the ēj average ranking values and the new rank-
ing R(ēj) correspondent to the ēj value. Table 4
shows similar information considering the number
of selected features.

In a similar way, we can combine these results to
obtain the evaluation of both aspects, as shown
in Table 5. According to this result, algorithm
CFS is the winner, FDimDF(2) the second best,
FDimDF(1) the third best and so forth. It can
be observed that this results are in concordance
with the ones obtained by our proposed model —
Table 2. However, rankings provide a better dis-
crimination among all FSS algorithms.

Algorithmj ēj āj
ēj+āj

2
R(

ēj+āj

2
)

ReliefF 2.9 5.55 4.23 6
CFS 3.2 3 3.1 1

FCBF 2.9 4.82 3.86 5
CBF 3.1 3.59 3.35 4

FDimBF(1) 4.9 1.43 3.17 3
FDimBF(2) 4 2.32 3.16 2

Table 5: Average ranks for error rate and selected
features

As stated before, the main advantage of rankings
lies in the possibility of considering various prop-
erties measured in different scales. Although not
all of the properties that are used for the eval-
uation of classifiers are quantifiable, such as the
interpretability of symbolic classifiers, it is still
possible to measure the so-called syntactic com-
plexity of the induced model which is related to
the total number of rules (or branches in a de-
cision tree), and the mean number of conditions
in the rules. In what follows, we consider the
overall syntactic complexity of the model induced
by C4.5 using the subset of features selected by

each FSS algorithm with respect to the one in-
duced using all features. The results for syntactic
complexity are shown in Table 6. In this table,
each line shows simultaneously both rankings for
branches bi

j and nodes di
j of the induced models.

As before, j refers to the FSS algorithm and i
to the data set. Complete results can be found
in [11]. In the same way, column 14 shows the
average for both branches and nodes. The next
column shows de mean of these two previous val-
ues. Finally, column 16 shows the final ranking
R(s̄j) for the syntactic complexity.

All results considering these three properties can
be combined as shown in Table 7. As can be seen
in this table, FDimBF(1) and CBF gain one posi-
tion, being ranked in second and third places, re-
spectively. On the other hand, FDimBF(2) looses
two positions, being ranked in the fourth posi-
tion. Taking into account all these results with
the 11 data sets, it can be observed that CFS
and FDimBF were always ranked within the top
50% of the best FSS algorithms.

6 Conclusion

In this work we proposed a simple multicriteria
model to assist the user in selecting the more ap-
propriate FSS algorithm for a given data set. This
model has an easy graphical interpretation, and
takes into account not only the performance of
the classifier induced with the subset of selected
features, but also the reduction in the number
of selected features. The model was applied to
six different FSS algorithms on 11 datasets. To
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Algorithmj Measure
b1j b2j b3j b4j b5j b6j b7j b8j b9j b10j b11j b̄j

s̄j R(s̄j)
d1

j d2
j d3

j d4
j d5

j d6
j d7

j d8
j d9

j d10
j d11

j d̄j

ReliefF
Branches 3 5 6 6 4 6 2 4 4 2 6 4.36

4.09 5.5
Nodes 2 5 5 1 6 2 5 6 2 6 2 3.82

CFS
Branches 6 1.5 1 2 1 1 3 1 5.5 4 4 2.73

2.95 1
Nodes 1 3 2 3 5 3 6 5 1 5 1 3.18

FCBF
Branches 5 3 3 4 3 5 1 3 5.5 3 5 3.68

3.36 4
Nodes 4 1.5 4 5 2 4 4 2 3 1 3 3.05

CBF
Branches 4 1.5 4 5 2 4 4 2 3 1 3 3.05

3.32 3
Nodes 5 2 3 4 3 5 1 3 5.5 3 5 3.59

FDimBF(1)
Branches 1 4 2 3 5 3 6 5 1 5 1 3.27

3 2
Nodes 6 1.5 1 2 1 1 3 1 5.5 4 4 2.73

FDimBF(2)
Branches 2 6 5 1 6 2 5 6 2 6 2 3.91

4.09 5.5
Nodes 3 4 6 6 4 6 2 4 4 2 6 4.27

Table 6: Ranks for syntactic complexity on each data set

Algorithmj ēj āj s̄j
ēj+āj+s̄j

3
R(

ēj+āj+s̄j

3
)

ReliefF 2.9 5.55 4.09 4.18 6
CFS 3.2 3 2.95 3.05 1

FCBF 2.9 4.82 3.36 3.69 5
CBF 3.1 3.59 3.32 3.34 3

FDimBF(1) 4.9 1.43 3 3.11 2
FDimBF(2) 4 2.32 4.09 3.47 4

Table 7: Average ranks for error rate, selected features and syntactic complexity

further discriminate the global results supplied
by our model, we proposed the use of rankings
and illustrate this idea taking into account the
same performance measures than the ones used
in the graphical model, and show how to further
improve the final ranking estimation considering
as a third aspect the syntactic complexity of the
induced classifiers.

As future work, we plan to investigate other mul-
ticriteria methods to analyze the performance of
algorithms using rankings, as well as evaluating
and comparing different ranking methods for this
task.
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