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Abstract. Feature Selection may be viewed as a search for optimal
feature subsets considering one or more importance criteria. This search
may be performed with Multi-objective Genetic Algorithms. In this work,
we present an application of these algorithms for combining different
filter approach criteria, which rely on general characteristics of the data,
as feature-class correlation, to perform the search for subsets of features.
We conducted experiments on public data sets and the results show
the potential of this proposal when compared to mono-objective genetic
algorithms and two popular filter algorithms.
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1 Introduction

Enormous volume of data has been collected, due to the development of tech-
nology, and organized in Databases (DB). Computational processes like Data
Mining (DM) may be applied in order to analyze these DB. DM enables the
construction of logical hypothesis (models) from data, potentially extracting
useful knowledge for specialists, that can be used as a second opinion in decision
making processes [18].

The DM process is mainly composed of pre-processing, pattern extraction
and pos-processing. Pre-processing involves the proper representation of the data
into forms like attribute-value, in which lines and columns represent, respectively,
examples and features (attributes, characteristics) of the data set. Other pre-
processing tasks include cleaning the data and Feature Selection (FS), which is
the focus of this work. The pattern extraction phase involves the construction
of models from data, using, for example, Machine Learning algorithms. The
obtained models are evaluated and consolidated by the specialists at the end of
the process (pos-processing).



FS may be formulated as a search for an optimal subset of features in a DB, in
which each state of the search space represents a possible subset of features [25].
The optimality of this subset may be estimated according to a maximization
or minimization function of one or more measures (criteria) of importance of
features. Applying FS allows mapping the original data to a projection in which
the examples are described by part of the features. This leads to a dimensional
reduction of the data set. Models constructed using these projections may have
lower complexity and potentially superior or equivalent quality when compared
to those generated using the original data. In addition, FS may help on a better
comprehension of the domain, by maintaining only the features with a good
ability, according to some importance criterion, to describe the inherent patterns
within the data and helps to reduce the effects of the curse of dimensionality [25].

Searching related to FS is usually a combinatorial process [7], precluding the
investigation of all subsets. This is one of the motivations to apply heuristic
search methods such as Genetic Algorithms (GA) [27] in this process. Further-
more, it may be interesting to find subsets of features that optimize different
importance criteria, leading to the motivation of using Multi-objective Opti-
mization strategies (MO) [6]. In the literature, there are many applications of
Multi-objective Genetic Algorithms (MOGA) in different areas and tasks, in-
cluding FS [36, 5, 13, 44, 37, 3, 19, 42].

The objective of this work is to evaluate the application of MOGA to FS
based on different filter importance criteria. The performed experiments inves-
tigate distinct combinations of these criteria, what is not performed in works
related to the filter approach [5, 37, 3, 42]. This work also differentiates from
previous work [35, 36, 5, 29, 33, 42, 34] by including a comparative evaluation of
the MOGA with distinct mono-objective GA, where each GA optimizes one fil-
ter importance criterion individually, and two popular filter FS algorithms. The
selected subsets are evaluated through the construction of models using two pat-
tern extraction algorithms in nine benchmark data sets. The predictive ability of
these models is statistically compared to the performance of models built using
all features.

This study is part of the Intelligent Data Analysis project (IDA) [35, 36, 23],
which is developed in a partnership among the “Universidade Federal do ABC”
(UFABC), the “Laboratório de Bioinformática/Universidade Estadual do Oeste
do Paraná” (LABI/UNIOESTE), the “Laboratório de Inteligência Computa-
cional/Universidade de São Paulo” (LABIC/USP) and the “Serviço de Colo-
proctologia/Universidade Estadual de Campinas” (UNICAMP).

This work is organized as follows: in Section 2 concepts related to FS and also
importance measures used in the MOGA are described. The complete proposal
is described in Section 3 and its evaluation, using nine data sets from a public
repository, is presented in Section 4. Final considerations are made in Section 5.



2 Feature Selection

Feature Selection may be viewed as a dimensional reduction process of a data set
in order to maintain only its most important features according to some criterion.
The importance criteria are usually based on the principles of relevance and non-
redundancy among features [15, 23, 17] and may be organized into measures of
consistency, dependency, distance, information and precision [25]. In this work,
one measure of each of the mentioned categories was used with the MOGA,
excluding precision. These measures were chosen from work related to filter
Feature Selection [1, 42, 20, 38, 28].

All considered data sets are for supervised learning and related to classifi-
cation problems. In these data sets, each example (or case) has an associated
label (or class) and the objective is to construct predictive models, which are
capable of predicting the label of new cases previously unknown. The data set
is composed of n pairs (xi, yi), in which xi = (xi (1) , . . . , xi (m)) represents an
example with m features and yi corresponds to its class. The exclusion of a rel-
evant feature F1 results in a worse predictive performance of the correspondent
classification model. Two features F2 and F3 are said to be non-redundant when
they are not significantly correlated.

It is relevant to mention that the feature importance estimation may be
considered in two ways: individually or in subsets. Nevertheless, the individual
evaluation methods are incapable of removing redundant features, as they may
present the same relevance [17]. For this reason, in this work we considered FS in
subsets. Individual importance evaluations are combined into a unique resultant
value, representing the subset of features as a whole.

The importance of features may be viewed according to the interaction with
the pattern extraction algorithm [25]. In the wrapper approach, a pattern ex-
traction algorithm, which will be used later for the construction of models, is
considered for selecting features. For each subset, a model using this specific al-
gorithm is constructed and evaluated. In the filter approach, feature subsets are
evaluated before the pattern extraction step, and considers general characteris-
tics of the data, such as statistical measures, to select the important features.
A third approach is the embedded, in which the process of selecting features
is performed internally by the pattern extraction algorithm, as in the case of
decision trees [31].

Importance Measures Importance measures inspired in the concept of con-
sistency value, for example, chooses subsets of features that minimize the occur-
rence of inconsistent pairs of examples in discretized data sets, that is, which
present identical values in each feature but different labels [1]. The Inconsistent
Example Pairs (IP) measure identifies the inconsistency rate by the ration of
the number of inconsistent pairs of examples and the total number of pairs of
examples.

Correlation measures enable a redundancy analysis of the data set when
estimating the prediction capability of a feature. The Attribute Class Correlation



(AC) [38] exemplifies this category, and is described by Equation 1, where wi

will be 1 if i is selected and 0 otherwise; φ (., .) = 1 if j1 and j2 have distinct
labels or −0.05 otherwise. |.| denotes the module function. The formulation of
C (i) demonstrates that this measure highlights feature values that show the
most distinct values for examples of different classes.

AC =
(∑

wiC (i)
)
/
(∑

wi

)
(1)

where C (i) =

∑
j1 6=j2

|xj1 (i)− xj2 (i)|φ (xj1,xj2)

n (n− 1) /2
.

The Inter-Class Distance measure (IE) [42] estimates the existent separabil-
ity between classes when the set of examples is described only by the investigated
subset of features. The separability maximization may be useful to generate clas-
sification models, as the differentiation of diverse patterns is favored. Equation 2
presents IE, where p is the central example (centroid) of a data set with k classes,
d(., .) denotes the Euclidean distance, and pr and nr represent, respectively, the
central example and the number of examples in class r.

IE =
1

n

k∑
r=1

nrd (pr,p) . (2)

The Laplacian Score (LS) [20] is also based on distance and is inspired by the
possibility of identifying examples with affinity when they are relatively next to
each other. In classification, for example, this behavior is potentially observed
among instances of the same label, highlighting the importance of modeling
the related local structure. Herewith, LS proposes building a nearest neighbor
graph, in which each node corresponds to a distinct example and the nearest
examples are connected by arcs. The S weight matrix of this graph is considered
in Equation 3, with x (i) = [x1 (i) , x2 (i) , · · · , xn (i)]

T
and 1 = [1, · · · , 1]

T
. This

formula includes the matrices D = diag (S1), in which diag(.) extracts the
diagonal matrix, and the Laplacian Graph [8] L = D − S.

LS (i) =
x̃ (i)

T
Lx̃ (i)

x̃ (i)
T
Dx̃ (i)

(3)

where x̃ (i) = x (i)− x (i)
T
D1

1TD1
1.

Information based measures may be applied to reduce the uncertainty asso-
ciated to the investigated problem. Representation Entropy (RE) [28], for ex-
ample, enables the investigation of the information distribution among features
and, consequently, to estimate the involved redundancy [41]. RE is presented by
Equation 4, in which the λi eigenvalues are extracted from a covariance matrix
of features of m order.



RE = −
∑

λ̃i log λ̃i (4)

where λ̃i =
λi∑
λi
.

Precision measures consider information like the accuracy rate of the model
in the classification of examples described by a subset of features or other esti-
mate of the models’ quality. Usually these measures are related to the wrapper
approach and are not considered in this work.

3 MOGA in Feature Selection

MOGA offers the combination of GA and MO for the solution of search and
optimization problems with multiple objectives [9]. Searching for subsets of im-
portant features in a data set can be considered a multi-objective task, since
there are multiple criteria for measuring their importance, and each one of them
considers different aspects of data [1, 42, 20, 38, 28].

With the goal of ranking risk factors related to premature births, in [42]
the Non-dominated Sorting Genetic Algorithm (NSGA-II) [12] MOGA was used
in FS relating, through the Pareto strategy, importance measures IE, AC and
Intra-Class Distance. Some results are superior to those of models built using all
features and also of other techniques for FS.

In [5] the NSGA-II algorithm is applied in supervised and semi-supervised
FS in data sets of hyperspectral images. Two measures were optimized simul-
taneously: discrimination between classes and spatial invariance of the features.
In general, the results obtained demonstrate a superior performance of MOGA
over mono-objective GA.

The same MOGA is used in [3] for FS in the classification of microarray gene
expression profiles. Because of the nature of these data, which generally have
few examples and many features, the classification task becomes more complex,
motivating FS. The importance measures of cardinality and ability to discrimi-
nate examples were jointly optimized. Experimentally, there were accuracy gains
when compared to a mono-objective GA and other techniques for FS.

The inter and intra correlation measures proposed by [37] were applied for
FS in data sets for the analysis of credit risk, using the algorithm NSGA-II.
Experimentally, the model built using the features selected by the MOGA had
a better performance than those models generated using all features and also
using features selected by mono-objective GA and the Relief technique [40].

This work differs from previous work by investigating some combinations
of filter importance measures belonging to different categories. The individuals
were encoded using a binary chromosome with m genes, each of which corre-
sponds to a distinct feature. A gene i with value 1 represents the selection of its
respective feature, while the value 0 indicates its exclusion. A randomly initial-
ized population of individuals is then evolved until a number of generations is
reached. The NSGA-II MOGA was used, as in the previous related work.



The importance measures used as objective functions to be optimized are
those discussed in Section 2, which belong to the classes: consistency, depen-
dence, distance and information. The aim is to exploit complementarities be-
tween representatives of measures from different categories. We investigated the
optimization of these measures in pairs always involving IE and some other
measure. This choice is based on previous results presented in [35, 36], where the
combinations involving the IE measure were more successful experimentally.

Experiments with three objectives led to a greater computational cost and
little gains in other aspects, such as in the reduction obtained on the subsets
of selected features. Furthermore, it is known that MOGA based on the Pareto
theory do not scale well for optimization problems with more than three objec-
tives [21]. For these reasons, only pairs of importance measures are considered
in this work.

LS is the only measure used in the study which evaluates the importance of
each feature individually. In its case, we used the average value calculated for
each selected feature (with value 1 on a chromosome s). The other measures
are calculated for each chromosome, using the subset of features represented by
genes with value 1.

We used the one-point crossover, bit-flip mutation and binary tournament [27]
in the MOGA. NSGA-II returns a set of optimal solutions, representing different
tradeoffs between the objectives considered. We used the Compromise Program-
ming (CP) technique [43] to select a single solution from this set due to its
relative simplicity.

4 Experimental Evaluation

We applied the NSGA-II for FS described in the previous section in nine data
sets from the UCI repository3 [2]: Australian (A), Dermatology (D), Ionosphere
(I), Lung cancer (L), Sonar (S), Soybean small (Y), Vehicle (V), Wine (W)
and Wisconsin breast cancer (B). All features in these data sets are numerical
and have continuous or discrete values. Table 1 presents, for each data set, the
Majority Class Error (MCE) rate, which corresponds to the error rate obtained
by classifying all data in the majority class, and the number (]) of examples,
features and classes.

Table 1. Data sets information

A D I L S Y V B W

]Examples 690 358 351 32 208 47 846 569 178
]Features 14 34 34 56 60 35 18 30 13
]Classes 2 6 2 3 2 4 4 2 3
MCE 44.49 68.99 35.9 59.37 46.63 63.83 74.23 37.26 60.11

3 Supported by the Turing Institute in Glasgow (Vehicle)



We used the NSGA-II implementation available in the Platform and pro-
gramming language Independent interface for Search Algorithms (PISA) [4],
with the following parameters: α = 50, µ = 50, λ = 50, crossover rate = 0.8,
mutationrate = 0.01, stoppingcriterion = 50generations. The parameters α, µ
and λ correspond, respectively, to the population size and the number of parents
and children individuals after reproduction. Their values were defined based on
related work. Another tool used in the implementations was the GNU Scientific
Library (GSL)4, which enables the implementation of the covariance matrices
associated with the RE measure.

As previously mentioned, we have investigated multi-objective combinations
involving the IE measure and each of the other four importance measures de-
scribed in Section 2, resulting in four distinct multi-objective settings. The eval-
uation of the subsets of features selected by the MOGA in each multi-objective
setting was performed by building classification models using projections of the
data sets containing the selected features. Classification algorithms J48, an im-
plementation of C4.5 [31], and Support Vector Machines (SVM) [10], from the
Weka tool [40], were used in the induction of classifiers. Their parameter values
were kept default. These classifiers were selected due to: the relatively low num-
ber of parameters, in the case of J48; and robustness to high dimensional data,
in the case of SVM.

We also implemented five mono-objective GA for FS, each of them using one
of the importance measures discussed in this work as fitness function. The same
binary encoding and genetic operators from MOGA were used. The results of
the FS algorithms Correlation-based Feature Subset Selection (CFS) [16] and
Consistency Subset Eval (CSE) [24] from literature are also presented. CFS
chooses subsets of features highly correlated with the class and that have low
inter-correlation, while CSE analyzes the consistency of the data projections
obtained using different subsets of features.

CFS and CSE filter algorithms come from the Weka tool and were employed
with default parameter values. The mono-objective GA’s parameters number of
generations, population size and probabilities of crossover and mutation were
changed in order to be identical to those used for NSGA-II. The population size
was set to 50 and the seed of GA, as for NSGA-II, was set randomly for each
run. The classification models defined using all the features in each data set were
included as baselines (ca). In LS we used as neighborhood of each example its
five nearest neighbors in terms of distance.

In the experiments, each data set d was initially divided according to Strat-
ified Cross-Validation (SCV) into 10 folds, which leads to 10 pairs of training
and test sets. Because of MOGA stochasticity, it was executed five times for
each training partition fi, and for each multi-objective setting ms. One unique
subset of features is identified for each MOGA run, using CP. This results in
five subsets of features per multi-objective setting. This enables the generation
of five different projections of the data partition fi. After training classification
models using the five projections and evaluating them on their corresponding

4 http://www.gnu.org/software/gsl



test partitions, 50 accuracy rates are obtained. Similarly, we counted up the
Percent of Reduction (PR) in the amount of original features for each run. The
mean values of these evaluation measures are reported for each setting ms. The
mono-objective GA are subjected to a similar procedure, while the other FS
algorithms and the baselines are evaluated by the mean values obtained in a
unique run for each of the 10 folds of d.

4.1 Results

For each data set, we show in Figures 1 and 2 the PR and the accuracy rate
of the J48 and SVM models for each FS algorithm when related to those rates
obtained when using all features (ca). Therefore, if a classifier ci and ca accuracy
rates are, respectively, 85.36% and 83.48%, the graph displays for ci the result
of the ratio between these rates (1.02). The horizontal line corresponds to the
point where this ratio reaches the value 1 in each graph, that is, when the rates
are equal for both ci and ca. The dark bars represent PR and the light bars show
the accuracy rates of the classifiers built using the features selected by each FS
algorithm. Therefore, if the top of a light bar is above the baseline line, the
accuracy of the model represented is higher than that of the baseline. The black
bars will never exceed the baseline line, because PR is always less than 100%
of the original number of features per data set. An aggressive PR is identified
when the top of its bar is close to the baseline line.

We noticed that, in general, the magnitude of the standard deviations of the
accuracy rates for each ci had no strong discrepancy to those achieved by ca.
Importantly, the FS embedded in J48 was not investigated in this work, therefore
all PR illustrated refer to subsets of features identified by the FS algorithms
evaluated.

Since we do not have assurance of normality, we employed the non-parametric
Kruskall-Wallis test [22] separately for each data set to identify statistical differ-
ences at 95% of significance level between each of the algorithms evaluated and
the baseline in terms of accuracy rate. Using a unique baseline implies in less
statistical comparisons, softening the multiplicity effect [32]. Models with higher
and lower statistical accuracy performance when compared to ca are highlighted
in the graphs, respectively, with a triangle pointing up and down. Models that
had accuracy not statistically lower than that of ca, while providing PR greater
than 50%, are highlighted with a circle. Table 2 summarizes these information,
presenting the total number of models significantly better (in brackets) and with
no significant difference when compared to ca, for each classifier. It also shows
the mean PR and standard deviation (in parentheses) by FS algorithm for all
data sets.

4.2 Discussion

We identified 7 models (3.5% of the total) with significant superiority and 135
models (68.2%) with no significant difference of results when compared to the
baseline, of which 46 had PR higher than 50%. A reduction in the number of



Fig. 1. J48 models generated after applying: (1) IE + AC, (2) IE + IP, (3) IE + LS,
(4) IE + RE, (5) AC, (6) IE, (7) LS, (8) IP, (9) RE, (10) CFS and (11) CSE.

Table 2. Models not statistically inferior to ca.

IE + AC IE + IP IE + LS IE + RE AC IE

J48 8 (1) 9 (0) 7 (1) 9 (0) 2 (0) 9 (0)

SVM 8 (0) 9 (0) 7 (0) 9 (0) 1 (0) 9 (0)

PR 42.07 (20) 3.18 (6.7) 33.84 (28.5) 8.53 (11.7) 95.17 (2.1) 10.94 (10.7)

LS IP RE CFS CSE

J48 1 (0) 7 (0) 7 (0) 6 (2) 7 (1)

SVM 1 (0) 3 (0) 6 (0) 7 (1) 3 (1)

PR 95.24 (1.9) 78.22 (12.3) 33.82 (11.7) 58.11 (21) 69.41 (25.7)

features with the maintenance or improvement in accuracy when compared to
the baseline is important, because it allows reducing the computational cost of



Fig. 2. SVM models gerarated after applying: (1) IE + AC, (2) IE + IP, (3) IE + LS,
(4) IE + RE, (5) AC, (6) IE, (7) LS, (8) IP, (9) RE, (10) CFS and (11) CSE.

the classification model induced and can also contribute to improve its com-
prehensibility [25, 38]. However, most of these occurrences are concentrated in
experiments related to the multi-objective setting IE + AC and to the CFS and
CSE algorithms. This behavior is reinforced by the results shown in Table 2,
where these algorithms showed PR greater than 40% and are associated to all
cases of statistical superiority when compared to the baseline. We also indentified
in several experiments, mainly those related to mono-objective GA using mea-
sures AC and LS, that a too aggressive dimensional reduction led to a predictive
performance statistically inferior to that of ca.

The MOGA based on the IE + AC measures stood out in comparison to the
other settings by allowing the generation of models with lower computational
complexity and predictive performance statistically similar to the baseline in
different data sets. Additionally, in the Sonar data set it was possible to ob-



tain a J48 model with superior performance when compared to ca. These results
reinforce previous experimental evidence [35, 36] of the importance of selecting
features that maximize the separability between classes for supervised classifica-
tion problems. The combined use of IE with other measures of importance can
contribute, for example, to select just one feature from two or more features that
are equivalent in terms of separability.

The mix between IE and AC explores the positive aspects of measures belong-
ing to distinct categories, which can be observed in the results of their individual
optimization in the mono-objective GA. The isolated use of the IE measure re-
sults in many models with high predictive performance, but that maintain most
of the features in the data sets. In many cases there is no dimensional reduction
at all with the isolated use of this measure. On the other hand, the GA that uses
the AC fitness function made aggressive reductions in the number of features
and generated models that also stand out for their predictive power, although
there are cases of significant losses in terms of accuracy.

IE + LS setting explores in a smaller scale the aggressiveness of the LS mea-
sure in reducing the percentage of features, which is similar to that obtained by
the AC criterion. This behavior is emphasized, in general, by observing that this
combination presents a greater number of models with accuracies statistically
lower than those of the baseline models when compared to other multi-objective
settings. A possible justification for this fact is that both measures belong to the
distance category, what is not observed in the other combinations investigated.
Thereafter, their combination do not enjoy the benefits of MO for FS regarding
different categories of importance.

In addition, the LS measure is dependent on a parameter for the construction
of the weight matrix of the graph that models the local structure of the data. This
parameter was set in the experiments with a unique value, motivating further
studies for the investigation of other values. This study may also contribute
to prevent the occurrence of cases in which no feature is selected by the mono-
objective GA with the LS measure, which was a specific behavior of this criterion
in previous experiments which, for instance, show the problem of division by zero
in Equation 3.

It is interesting to notice that the combinations between the IE measure and
measures IP and RE tends to maintain all features in several cases. In fact, it
was found experimentally that the measures RE and IP in general are relatively
more conservative than the criteria AC and LS regarding PR, which may have
contributed to the fact that these measures reached satisfactory accuracy rates
in some mono-objective experiments. For monotonic criteria as IP, conservatism
can be explained because a larger number of selected features may allow to define
more logical hypothesis [1]. In general, it appears that the joint optimization of
conservative measures, such as IE, IP and RE tends to generate models that
keep that characteristic. Specifically in MOGA IE + IP and IE + RE, the strong
conservatism of the IE measure prevailed over the mild conservatism of IP and
RE measures.



An analysis of the results obtained by CFS and CSE shows that these al-
gorithms are competitive with the GA investigated. The MOGA optimizing IE
+ AC is that which most closely approximates the results of these algorithms
considering predictive performance. The number of models that are highlighted
with a circle or statistically better than ca after the application of these tech-
niques is higher than that observed for all mono-objective and multi-objective
GA, while the average PR for each one of them in the nine data sets is higher
than 50%. The CSE algorithm specifically exhibits the disadvantage of present-
ing a larger number of models with results statistically lower than the baseline
when compared to IE + AC MOGA and CFS. Importantly, both FS algorithms,
like all MOGA, present in most experiments a larger number of models with no
statistical difference when compared to the baseline.

We also noticed that the use of J48 provided the occurrence of a larger total
number of models with statistical superiority to ca than the SVM. It appears that
the accuracy rate of models generated from projections of features is influenced
by the classification technique used afterwards. This influence may have led to
the fact that a FS algorithm underperforming ca for a particular classification
technique can be superior for other technique. Future work shall investigate the
predictive behavior of other classification techniques with and without FS. Some
initial experiments have been performed and have confirmed those observations.

In future we also plan to combine in a MOGA the IE and the importance
measure of CFS (original or altered as in [26, 30]). Herewith, it would be possible
to perform FS considering both distance and dependency, as in IE + AC, using
measures that have been investigated in recent studies [11, 14, 35, 36, 42]. In fact,
the AC dependence measure explores only relevance, selecting features most
correlated with the data labels. Since the measure used in CFS also considers
the correlation between features, it also addresses the non-redundancy aspect.

Therefore, the method used in this work supports the implementation of
different measures of importance of features, including those from algorithms
CFS and CSE. This flexibility already enabled the investigation of labeled data
with numerical feature values using different combinations of six criteria, taken
in pairs or triplets [35, 36]. Besides, some importance measures are also flexible.
Measures such as IE can be used for FS in data sets with categorical features by
using other distance metrics [39], while the LS and RE criteria are applicable to
unlabeled data. Another advantage of the MOGA is its ability to return multiple
solutions (various subsets of features). Only one of them was selected with the
CP technique in our work, but others could be selected using different techniques
or they could be even combined.

All FS algorithms investigated in this work belong to the filter approach. It
was possible to build many models with similar accuracy to those of classifiers
that use all features, while using lower numbers of features. For J48, for example,
this could lead to the obtainment of decision trees with fewer nodes and can result
in more understandable decision rules. These advantages are achieved with a
computational cost potentially lower than would be obtained with algorithms
that employ wrapper measures [25].



5 Conclusion

This work presented an evaluation of a MOGA for FS in labeled data sets, in-
cluding different multi-objective configurations of features’ importance measures.
Their results were also compared to those of GA that optimize each importance
measure individually and two popular FS techniques available in a free tool. In
the experimental results and discussions we observed a prominence of the com-
bination of IE and AC measures, coming from categories based on distance and
dependency, respectively, and of the two filter algorithms from literature, which
allowed to obtain different models with reduced number of features and good
predictive performance.

The good results of the IE + AC MOGA in this study suggest that combining
measures belonging to different categories of importance is interesting for FS
in labeled data. The multi-objective optimization of these measures enables the
identification of relevant features both in terms of separability between examples
and correlation between features and the class. It should be also worth to analyse
the degree of complementarity of these measures.

As future work we aim to combine the measures IE and that of the CFS
algorithm in NSGA-II and also compare the results of different classifiers when
using the subsets of features. It is also interesting to investigate the application
of measures such as IE and IP in data sets with categorical features and perform
experiments with the LS and RE criteria in unlabeled data sets. We can still
observe the influence of different parameter values for the LS importance measure
and to compare the investigated MOGA to other multi-objective metaheuristics,
as well as to wrapper FS approach.
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