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Abstract. In multi-label learning, each example in the dataset is asso-
ciated with a set of labels, and the task of the generated classifier is to
predict the label set of unseen examples. Feature selection is an important
task in machine learning, which aims to find a small number of features
that describes the dataset as well as, or even better, than the original
set of features does. This can be achieved by removing irrelevant and/or
redundant features according to some importance criterion. Although ef-
fective feature selection methods to support classification for single-label
data are abound, this is not the case for multi-label data. This work
proposes two multi-label feature selection methods which use the filter
approach. This approach evaluates statistics of the data independently
of any particular classifier. To this end, ReliefF, a single-label feature
selection method and an adaptation of the Information Gain measure
for multi-label data are used to find the features that should be selected.
Both methods were experimentally evaluated in ten benchmark datasets,
taking into account the reduction in the number of features as well as
the quality of the generated classifiers, showing promising results.

1 Introduction

Machine Learning (ML), which has significant overlapping with data mining,
pattern recognition and parts of statistics, is an important field of Artificial
Intelligence. ML deals with the fundamental problem of using a dataset to re-
produce the process that generated the data.

Multi-label learning deals with the classification problem where each exam-
ple (or instance) in the training dataset is associated with a set of labels, i.e.
each example can belong to multiple different classes simultaneously. Multi-label
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learning is an emerging research topic due to the increasing number of appli-
cations where examples are annotated with more than one label. Multi-label
classification has been used in applications such as semantic annotation of video
and image, bioinformatics, text categorization and categorization of music into
emotions [15].

The task of a multi-label classifier is to predict the label set of unseen ex-
amples. Thus, multi-label learning is more general than single-label learning, in
which each example in the training dataset is associated with only one class,
which can assume several values. Whenever there are more than two class val-
ues in single-label learning, it is called multi-class classification. Case the class
value is Yes/No, it is called binary classification. In fact, the main difference be-
tween multi-label and single-label learning is that classes in multi-label learning
are often correlated while the class values in single-label learning are mutually
exclusive.

Several approaches have been proposed for multi-label learning, which are
well described in [15], where the existing methods for multi-label classification
are divided into two main categories: problem transformation and algorithm
adaptation. The first category considers methods which transform the multi-
label classification problem into either one multi-class classification problem or
several binary classification problems. Thus, state of the art algorithms such as
SVM can then be used directly. The second category consists of methods that
extend specific algorithms such that they can handle multi-label data directly.

Similarly to other data mining and machine learning tasks, multi-label learn-
ing also experiences the curse of dimensionality, which may cause problems when
learning from high-dimensional data. Dimensionality reduction can be tackled,
among others, through Feature Selection (FS), which aims to find a small num-
ber of features that describes the dataset as well as, or even better, than the
original set of features does [8]. This can be achieved by removing irrelevant
and/or redundant features according to some importance criterion. Although
effective feature selection methods to support classification for single-label data
have been extensively studied for many years, few results on multi-label dimen-
sionality reduction have been reported.

This work proposes two multi-label feature selection methods which use the
filter approach. This approach evaluates statistics of the data irrespective of
any particular classifier. The first method uses the standard approach, which
consists in measuring the contribution of each feature according to each label.
Afterwards, the average of the score of each feature across all labels is considered,
and features with an averaged score greater than a threshold are selected. To
this end, ReliefF, a single-label feature selection method is used. Although this
approach to multi-label feature selection is standard, to the best of our knowledge
this is the first time that ReliefF is used for this purpose. However, this approach
does not consider label correlations. The second method uses an adaptation of
the Information Gain (IG) measure for multi-label data, and features which have
an IG greater than a threshold are the ones selected.
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Both methods were experimentally evaluated in ten benchmark datasets,
taking into account the reduction in the number of features as well as the quality
of the generated multi-label classifiers, showing promising results.

The rest of this paper is organized as follows: Section 2 briefly presents multi-
label learning and Section 3 addresses feature selection for multi-label learning as
well as related work. The filter methods proposed are described in Section 4 and
their experimental evaluation in Section 5, which is followed by the conclusions
and future work in Section 6.

2 Multi-label Classification

This section presents basic concepts and terminology of multi-label learning, as
well as the Binary Relevance multi-label transformation approach used in this
work.

2.1 Basic Terminology and Concepts

Let D be a dataset composed of N examples Ei = (xi, Yi), i = 1..N . Each exam-
ple Ei is associated with a feature vector xi = (xi1, xi2, . . . , xiM ) described by
M features Xj , j = 1..M , and a subset of labels Yi ⊆ L, where L = {y1, y2, ...yq}
is the set of q possible labels. Table 1 shows this representation. In this scenario,
the multi-label classification task consists in generating a classifier H which,
given an unknown instance E = (x, ?), is capable of accurately predicting its
subset of labels Y , i.e., H(E)→ Y .

Table 1. Multi-label data.

X1 X2 . . . XM Y

E1 x11 x12 . . . x1M Y1

E2 x21 x22 . . . x2M Y2

...
...

...
. . .

...
...

EN xN1 xN2 . . . xNM YN

As already mentioned, methods for multi-label classification can be divided
into two main categories: problem transformation and problem adaptation. The
first category considers methods which transform the multi-label classification
problem into either one multi-class classification, such as the Label Powerset
(LP) approach, in which each unique set of labels in the training set is considered
as a class value, or several binary classification problems, such as the Binary
Relevance approach described next does. In both cases, multi-class or binary,
respectively, state of the art algorithms can then be used directly. The second
category consists of methods that extend specific algorithms such that they can
handle multi-label data directly [15].
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2.2 Binary Relevance

This problem transformation approach decomposes a multi-label classification
problem into several distinct binary classification problems, one for each label in
the set of labels L with |L| = q. The Binary Relevance (BR) approach initially
transforms the original training dataset into q binary datasets Dyj , j = 1..q,
where each Dyj

contains all examples of the original dataset, but with a single
positive or negative label related to the single label yj according to the true
label subset associated with the example, i.e., positive if the label set contains
label yj and negative otherwise. The other labels (yk, k 6= j) are not included in
Dyj . After the data is transformed, a set of q binary classifiers Hj(E), j = 1..q
is constructed using the correspondent training dataset Dyj . In other words, the
BR approach initially constructs a set of q classifiers — Equation 1:

HBR = {Cyj
((x, yj))→ λj ∈ {0, 1}|yj ∈ L : j = 1..q} (1)

To classify a new multi-label instance, the algorithm outputs the aggregation
of the labels positively predicted by all the q independent binary classifiers.

An advantage of the BR approach is its low computational complexity com-
pared with other multi-label methods. For a constant number of examples, BR
scales linearly with size q of the label set L, which makes it appropriate for not
very large q. For large numbers of labels some divide-and-conquer methods have
been proposed to organize labels into a tree-shaped hierarchy where it is possi-
ble to deal with a much smaller set of labels compared to q. A disadvantage of
the standard BR approach is that it completely ignores any label relationships.
However, two successful methods that enable the binary classifiers to discover
existing label dependency by themselves have already been proposed [2, 10].

3 Feature Selection for Multi-label Classification

Approaches to feature selection are addressed next, as well as related work in
feature selection for multi-label classification.

3.1 Feature Selection Approaches

FS methods can be classified into three main categories (wrapper, embedded or
filter) according to the interaction with the learning algorithm [8].

The wrapper approach uses the learning algorithm itself as a black box to
evaluate candidate subsets of features, repeating the process on each feature
subset until a stopping criterion is met. Thus, wrapper methods take into con-
sideration all the important characteristics of the learning algorithm in the final
decision of the feature selection process. However, its computational cost could be
very high. Similarly to wrappers, FS performed by embedded methods is linked
with the learning algorithm itself. However, in this case this link is stronger
than in wrappers, since the FS process is included in the classifier construction.
A typical example of embedded methods for feature subset selection is decision
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trees [9]. Unlike these two approaches, filter methods perform a separate pro-
cess that does not interact with and is independent from the learning algorithm
itself. The basic idea of filters is to use general characteristics of data to select
the relevant features according to these characteristics, before the construction
of the classifier takes place. An advantage of filters is the fact that they are fast
and simple to use.

3.2 Related Work

Although effective FS methods to support classification for single-label data have
been extensively studied for many years, few results on multi-label dimension-
ality reduction have been reported. A systematic review process, a method to
support bibliographic reviews, related to multi-label FS was carried out in [12].
Results show the findings of less than 50 related papers, as well as a growing
interest in the subject in recent years.

Some papers use the wrapper approach addressing directly the multi-label
data [17]. However, most papers consider the previous transformation of multi-
label data to multi-class data (using LP) or binary data (using BR). Afterwards,
the filter approach is used in the transformed data. To this end, measures related
to Information Gain [1, 16], mutual information [5], chi-square [14] and others are
used. Whenever the BR approach is used, each label is considered separately and
the results are combined using, for example, an averaging approach. Embedded
feature selection is used in [3, 6]. In addition, in [7] it is proposed to learn the
label correlation and do FS simultaneously.

4 Multi-label Feature Selection Methods Proposed

The first method, named RF, was initially proposed in [13], where it was eval-
uated but on few multi-label datasets. RF uses ReliefF, an algorithm which
measures the quality of attributes of single-label data. The main advantage of
ReliefF over other strictly univariate measures is that it takes into account the
effect of interacting attributes. The idea of ReliefF and its derivatives is to re-
ward an attribute for having different values on a pair of nearest examples from
different classes, and penalize it for having different values on examples from the
same class [4, 11]. For each feature, ReliefF outputs a value w, ranging from -1
to 1 with large positive w assigned to important features.

Initially, RF uses the BR approach to transform the multi-label training
dataset into q binary datasets and ReliefF is used in the conventional way to
evaluate the set of features {X1, X2, ..., XM} on each of the q binary datasets.
The q ReliefF measure values of each feature Xi, i = 1..M, are then averaged and
the ones with values greater than or equal to a threshold are selected. However,
apart from the use of ReliefF, of which we are not aware it has been used before
for multi-label feature selection, RF uses the standard multi-label filter approach,
which considers each label separately. Thus, it has the disadvantage of do not
considering label correlations.

The second method, named IG-ML, aims at taking into consideration label
correlations. To this end, the Information Gain (IG) measure for multi-label
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data proposed in [3] is used directly in the multi-label data. IG-ML evaluates
the multi-label IG of the set of features {X1, X2, ..., XM} and the ones with IG
values greater than or equal to a threshold are selected.

5 Experimental Evaluation

Both methods were implemented using Mulan3, a Java package for multi-label
classification based on Weka4. The experiments were carried out using two dif-
ferent base single-label classifiers from Weka: J48, an implementation of the
decision tree C4.5 algorithm [9] and the support vector machine SMO learn-
ing algorithm. The methods were evaluated using 10 datasets. All the reported
results were obtained by Mulan using 10-fold cross validation with paired folds.

5.1 Datasets

Table 2 describes the datasets used in the experiments, obtained from the Mu-
lan’s repository5. It shows the datasets domain (Domain); number of examples
(N); number of features (M); number of labels (|L|); Label Cardinality (LC),
which is the average number of labels associated with each example defined by
Equation 2; Label Density (LD), which is the normalized cardinality defined by
Equation 3, and the number of Distinct Combinations (DC) of labels.

LC(D) =
1

|D|

|D|∑
i=1

|Yi| (2) LD(D) =
1

|D|

|D|∑
i=1

|Yi|
|L| (3)

Table 2. Datasets used for experiments

Dataset Domain N M |L| LC LD DC

1-bibtex text 7395 1836 159 2.40 0.02 2856

2-cal500 music 502 68 174 26.04 0.15 502

3-corel16k001 images 13766 500 153 2.86 0.019 4803

4-corel5k images 5000 499 374 3.52 0.01 3175

5-emotions music 593 72 6 1.87 0.31 27

6-enron text 1702 1001 53 3.38 0.06 753

7-genbase biology 662 1186 27 1.25 0.05 32

8-medical text 978 1449 45 1.25 0.03 94

9-scene image 2407 294 6 1.07 0.18 15

10-yeast biology 2417 103 14 4.24 0.30 198

5.2 Performance Measures

The performance of multi-label classifiers can be evaluated using different mea-
sures. Some of these measures are adaptations from the single-label classification

3 http://mulan.sourceforge.net
4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://mulan.sourceforge.net/datasets.html
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problem, while others were specifically defined for multi-label tasks. In what
follows, we briefly describe the measures used in this work to compare both
methods. These measures are Hamming Loss, Accuracy, F-Measure and Subset
Accuracy, defined by Equations 4 to 7 respectively, where ∆ represents the sym-
metric difference between two sets, Yi is the set of true labels, Zi is the set of
predicted labels and I(true) = 1 and I(false) = 0.

Hamming Loss(H,D) =
1

N

N∑
i=1

|Yi∆Zi|
|L| (4)

Accuracy(H,D) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(5)

F -Measure(H,D) =
1

N

N∑
i=1

2|Yi ∩ Zi|
|Zi| + |Yi|

(6)

SubsetAccuracy(H,D) =
1

N

N∑
i=1

I(Zi = Yi) (7)

All these performance measures have values in the interval [0..1]. For Ham-
ming Loss, the smaller the value, the better the algorithm performance is, while
for the other measures greater values indicate better performance. Note that Sub-
set Accuracy is a very strict evaluation measure as it requires an exact match of
the predicted and the true set of labels. Furthermore, as one of the advantages
of FS is to reduce the data dimensionality, the average percentage of feature
reduction in RF and IG-ML was also considered in the experimental evaluation.

5.3 Results and Discussion

Table 3 presents the average feature reduction and the standard deviation (in
brackets) carried out by RF and IG-ML, using as a threshold 0.01 and 0.1 re-
spectively, which can be considered conservative [11].

Table 3. Average percent of feature reduction (and standard deviation).

Dataset RF IG-ML

1-bibtex 78.31(0.31) 84.79(0.30)

2-cal500 8.82(0.98) 0.00(0.00)

3-corel16k001 70.10(0.67) −
4-corel5k 43.99(1.62) 95.93(0.31)

5-emotions 23.89(1.94) 1.53(0.44)

6-enron 1.27(0.30) 6.22 (0.54)

7-genbase 95.51(0.21) 97.05 (0.07)

8-medical 86.62(1.06) 95.89 (0.05)

9-scene 19.15(0.58) 11.63 (1.64)

10-yeast 40.58(2.74) 15.73 (2.85)
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Note that the IG values of all features for dataset corel16k001 were lower
than the threshold (8 cases). As can be observed, for some datasets both meth-
ods reduced the number of features by more than 75% (bibtex, genbase and
medical datasets). For cal500 RF reduced less than 10% while IG-ML no re-
duced dimensionality. However, for corel5k, IG-ML was able to reduce twice as
much features than RF. Thus, we can conclude that, in general, RF and IG-ML
select different features. Nevertheless, the features selected must be useful for
the multi-label learning algorithm. To this end, using the BR approach and the
two different base-learning algorithms J48 and SMO, the classifiers constructed
using all features, and the features selected by RF and IG-ML were analyzed.

For all datasets and base-learning algorithms, the average (and the standard
deviation) of the four multi-label performance measures were tabulated. Observe
that the value of these measures for the classifiers constructed using all features
represent a good Baseline for the ones obtained with the features selected by
RF and IG-ML. However, due to lack of space, these tabulated results are not
shown in this paper, but they can be found at http://www.labic.icmc.usp.

br/pub/mcmonard/ExperimentalResults/SBIA2012.pdf.

These results show that from the total of 152 performance measure values
tabulated (2 base-learning algorithms × 2 FS methods × 4 performance mea-
sures × 10 datasets −8), and considering the standard deviation (which has 0.07
as its maximum value), only 21 of them show a degradation compared to the
correspondent Baseline performance measure. This represents less than 14%,
which can be considered a good result. Furthermore, 9 of these 21 cases were ob-
tained when using J48, and the remaining 12 by SMO. Regarding the datasets,
most of the performance measures were significantly worse than those for the
correspondent Baseline for corel5k (10 cases, 5 by RF and 5 by IG-ML). From
the remaining 11 cases, 10 were obtained using the features selected by RF in
the following datasets using the specified base-learning algorithm (this behavior
happens to both algorithms case the learning algorithm is not specified), and
performance measures: 1-bibtex (Subset Accuracy & SMO, F-Measure and Ac-
curacy); 3-corel16k001 (F-Measure and Accuracy, Subset Accuracy & J48). The
last case was obtained by IG-ML in the bibtex dataset (Hamming Loss & SMO).

Nevertheless, in order to evaluate FS two aspects should be considered si-
multaneously: the reduction in the number of features versus the performance
measure values of the classifier generated using the features selected. To this
end, a graphical analysis is more appropriate. It should be observed that the
evaluation of multi-label learning is more difficult than for single-label learning.
In fact, the classification of a new instance by single-label classifiers has only
two possible outcomes: correct or incorrect. On the other hand, multi-label clas-
sifiers should also take into account partially correct classification. Thus, several
performance measures have to be analyzed. Due to lack of space, only one graph
with this kind of analysis is shown. Graphs for all datasets and the four perfor-
mance measures used in this work can be found at http://www.labic.icmc.

usp.br/pub/mcmonard/ExperimentalResults/SBIA2012.pdf.
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To illustrate, Figure 1 shows this information for Hamming Loss and F-
Measure using bibtex dataset. Baseline refers to the performance measure values
obtained using all features. One can note that for Hamming Loss, results nearer
to the left-hand bottom corner of the figure are the best, while for F-Measure
the best results are the ones nearer to the right-hand bottom corner.
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Fig. 1. Bibtex dataset FS evaluation using J48 as base-learning algorithm.

As can be observed in Figure 1, both FS methods obtained good results, since
the performance measure values are similar to the Baseline, but were obtained
using less features. Moreover, for this dataset, IG-ML is slightly better than RF
since it was able to reduce the number of features more. Similar results for this
dataset were obtained using SMO as base-learning algorithm.

6 Conclusion

Selecting features is an important task in machine learning in order to take
care of the curse of dimensionality problem. This work analyses the behavior
of two feature selection methods for multi-label learning which use the filter
approach. The first method, RF, uses the multi-label feature selection standard
approach. This approach considers a feature evaluation measure for each label
separately, which are further composed in only one evaluation measure used to
select the features. In this work, we proposed the use of ReliefF to evaluate
each feature separately. However, the standard approach fails to consider any
correlation among labels. The second method, IG-ML, aims to take into account
the correlation among labels. To this end, the new information gain measure
proposed in the literature for multi-label learning is used directly in the multi-
label data as a feature evaluation measure. Both FS methods were thoroughly
evaluated experimentally in ten benchmark datasets, showing promising results.

As future work, we plan to investigate the possibility of extending the ideas
behind ReliefF for multi-label data.
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