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Abstract. In the last decade symbolic representations approaches have
shown effectiveness for knowledge discovery in time series, such as the
Symbolic Aggregate Approximation (SAX). However, SAX doesn’t pre-
serve the local slope information of the time series because it uses only the
mean values of the segments. The modification Extended SAX (ESAX)
proposed to treat this problem by the dimensionality increase. In this
paper, we present a symbolic representation method that preserves the
behavior of local slope characteristics in the symbolic representations of
the time series. The proposed method was evaluated with three different
discretization approaches and compared with the SAX and the ESAX al-
gorithms. The experimental evaluation, using artificial and real datasets
with 1-nearest-neighbor classification, demonstrate the method effective-
ness to reduce the error rates of time series classification and to keep the
local slope information in the symbolic representations.

Keywords: Time Series, Knowledge Discovery, Symbolic Representa-
tion, Classification, Dimensionality Reduction

1 Introduction

The traditional data mining algorithms were developed to analyze data without
temporal relation. However, the storage increase of continuous data with tem-
poral interdependencies, such as time series, has motivated the development of
new data mining approaches [1, 2]. The time series are collections of observa-
tions made chronologically and this type of data is present in almost all domains
such as business, industry, medicine, science and entertainment. Time Series
Data Mining (TSDM) is a relatively new area that uses data mining methods
adjusted to take into consideration the temporal nature of data [3, 4].

Over the last decade many interesting TSDM techniques were proposed and
have shown to be useful in many applications [5]. Specifically, symbolic represen-
tations have demonstrated to be a very effective tool to reduce the dimensionality
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of the time series [2, 6–8] and to preserve the underlying information and produce
interpretable symbols within the domain [1, 9].

The most common symbolic representation is the Symbolic Aggregate Ap-
proximation (SAX) [2]. The variation Extended SAX (ESAX) was proposed to
keep the slope information into symbolic representation. However, the ESAX
algorithm causes the increase of the dimensionality and uses additional values
of the raw data that can be affected by the noise presence [10].

In previous work [11] we proposed a initial symbolic representation method
to preserve the approximated local slope information between the time series
observations. In this work, we extend the previous work by presenting a sliding
window function to transform the time series data. Furthermore, we propose and
evaluate the application of different discretization approaches.

The rest of this paper is organized as follows. Section 2 presents background
on time series data mining and related works. Section 3 introduces our symbolic
method. Section 4 contains an experimental evaluation of the symbolic method
on a variety of the time series datasets. In Section 5 the effectiveness of the
symbolic method is also analyzed. Finally, Section 6 presents the conclusions
and directions for future works.

2 Background and Related Works

In the context of TSDM, the time series representation is a fundamental prob-
lem because direct manipulation of high dimensional data in an efficient way is
extremely difficult in traditional data mining techniques. A common approach
is to use a time series representation based on some dimensionality reduction
technique, while preserving the relevant characteristics of a particular dataset
[1, 8]. Many numerical time series representation approaches have been proposed
in the literature to reduce the high dimensionality [5, 2].

There are domains, such as medicine and finances, where symbolic represen-
tation rather than numerical analysis is needed to produce more comprehensive
knowledge of the time series [12]. Many works have also considered symbolic rep-
resentations of time series, such as Shape Description Alphabet (SDA); Interac-
tive Matching of Patterns with Advanced Constraints in Time Series Databases
(IMPACTS); Clipping ; Persist ; and Piecewise Vector Quantized Approximation
(PVQA) [5, 2, 3].

Most of the symbolic representations cited are affected by two main aspects.
Firstly, the intrinsic dimensionality of the symbolic representation is the same
as the raw data, thus the data mining algorithms scale poorly with high di-
mensionality. Second, the unavoidable noise presence in time series can produce
meaningless symbols. The SAX is the first symbolic approach that applies di-
mensionality reduction technique as a preprocessing step, in this case the PAA
algorithm [2]. The smoothing property of the PAA contributes to minimize the
noise effect.
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Piecewise Aggregate Approximation: To transform m-dimensional vector
space X to an w-dimensional vector space Y, the data is divided into w equal-size
segments, and the mean value of each segment is used to represent original time
series with lower w-dimension. The time series T = {t1, . . . , tm} of length m can
be represented in w-dimensional space by a vector T = {t1, . . . , tw} and the ith
element of T is calculated by the Equation 1 [2]:

ti =
w

m

m
w i∑

j=m
w (i−1)+1

tj (1)

Symbolic Aggregate Approximation: The SAX symbolic representation is
performed in two steps. First the PAA algorithm is applied to the raw time series
(Figure 1(a)). Second, the distribution space (y-axis) is divided into equiprobable
regions under a Gaussian curve and the mean segment values from PAA are
converted into symbols corresponding to each segment [2]. The SAX symbolic
representation can be defined by the function SAX(T ,w, a) = T̂ = {t̂1, . . . , t̂w}
where t̂i represent the ith symbol, w is the number of segments and a is the
alphabet size. In the Figure 1(b) is presented a SAX example of a symbolic
sequence baabccbc with the alphabet {a, b, c}.

Fig. 1. (a) PAA application example and (b) SAX application example.

In the last decade, SAX has been widely applied to many fields and obtained
good results [5, 2]. However, the smoothing effect by only using the PAA al-
gorithm may lose useful information, especially the segment slope information.
Furthermore, the equiprobable feature of SAX symbols produces low perfor-
mance for non-uniform time series [7].

The ESAX approach proposed in [10] is based in addition to the mean
value two new symbols for each segment representation, the maximum value
and the minimum value of the interval. The ESAX symbolic representation
can be defined by the function ESAX(T ,w, a) = T̂ = {t̂1, . . . , t̂w} where t̂i =
{pmin, pmid, pmax} is the ith symbolic segment, w is the number of segments and
a is the alphabet size. The position of the symbols pmin (minimum value), pmid

(mean value) and pmax (maximum value) in each symbolic segment is determined
by the increasing order. However, the ESAX approach has some problems, such
as the dimensionality increase by three times the dimensionality of the SAX ap-
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proach. Furthermore, the selection of the maximum value and minimum value
in each segment can be affected by the noise presence in these points.

In [11] was proposed a symbolic representation method to preserve the ap-
proximated local slope information between the time series observations based
on the first order differences calculus to the PAA representation and the k-means
algorithm to create the symbols. But, this approach also presents some problems
such as computing cost to define the initial centers in k-means application and
the need to use some training set to create the symbols.

3 Symbolic Representation Method

In this section we present a new symbolic representation method for time series.
The method is performed in three sequential steps: Dimensionality Reduction;
Data Transformation; and Symbol Creation. The first step is performed by the
application of PAA algorithm (Equation 1).

In this work, we proposed an intermediate step between dimensionality re-
duction and symbolic representation. The data transformation step is used to
keep approximated information about the local slope of the time series. In this
step, we calculated the first order differences between the adjacent values T
produced by PAA algorithm.

For each pair of adjacent elements (i, i+1) in the reduced dimension T , where
1 ≤ i ≤ w − 1, the new first order difference value is δ(i) = ti+1 − ti. After,
a sliding window function θ of size three is applied for each δ(i) value where
1 ≤ i ≤ w − 3. The function θ is defined by the Equation 2. The transformed
time series is given by the values Θ = {θ(1), . . . , θ(w − 3)}.

θ(i) =
δ(i) + 2× δ(i+ 1) + δ(i+ 2)

2
(2)

The sliding window function θ is used to emphasize continuous adjacent
segments in the same direction and to minimize the transitions between adjacent
segments with different directions.

Symbol creation is performed based on time series produced by the data
transformation step. A discretization algorithm is used to divide in k groups
the values {θ(1), . . . , θ(w − 3)} and to calculate k centroids C = {c1, .., ck}.
The values in C are used to associate the values in Θ to symbols. The k value
represents the alphabet size for symbolic representation.

The symbol is defined by a function called Symb (Equation 3) that receives
a θ(i) value and the centroids {c1, .., ck} as input to compute the correspondent
symbol.

Symb(θ(i), C) = which.min({|c1 − θ(i)|, . . . , |ck − θ(i)|}) (3)

where the function which.min finds the cj value that has the minimum difference
to the θ(i) value, where 1 ≤ j ≤ w − 3.

The function Symb is applied for each value in Θ and the result set is the
symbolic representation T̂ of the time series T . The values of the symbols in T̂ is
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the approximated difference value between the points in T representation. Thus,
it is possible to associate to the symbols one meaningful information, such as the
slope angle which is given by α = tan−1(cj). By example, suppose the symbolic
sequence CBBDACD considering the alphabet size a = 4 and the respective
centroids C = {+2.5,+1.3,−1.2,−2.8} we can represent the sequence by the
approximated angles values (−50o,+52o,+52o,−70o,+68o,−50o,+68o).

In the symbol creation to compute the centroids we proposed three different
approaches:

Equal Fixed-Values Discretization (EFVD): In this approach the values
from the data transformation step are divided into equal-sized regions between
the predefined values min = tan(−90o×π/180) and max = tan(+90o×π/180).
In the Figure 2(a) is presented a figurative example considering the alphabet size
a = 4 where the regions can be viewed as a distribution of angles and the set
of symbols {A,B,C,D} is associated to the mean value of each region. In this
example the centroids are {A = +67.5o, B = +22.5o, C = −22.5o, D = −67.5o}.

Equal Width Discretization (EWD): This discretization method is per-
formed by dividing the range value, provided by the data transformation step,
into equal width regions. In this approach should be used a set of time series to
build the intervals. For each region, the mean of the values are calculated and
associated to one symbol. The figurative example presented in the Figure 2(b)
uses a alphabet size a = 4 and the set of symbols {A,B,C,D}. In this approach
the symbol values depend of the contained values in the time series used to the
discretization.

Equal Frequency Discretization (EFD): This discretization method is sim-
ilar to the EWD algorithm, but in this approach the range value is divided into
equal frequency of values in each region (Figure 2(c)).

Fig. 2. Discretization algorithms: (a) EFVD; (b) EWD and (c) EFD.

4 Experimental Evaluation and Results

In this section we present an extensive empirical comparison between the sym-
bolic representations SAX, ESAX and our method with the proposed discretiza-
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tions approaches EFVD, EWD and EFD. As suggested in [13], we performed
an initial experimental classification to the symbolic representations using one
nearest neighbor classifier and Euclidean Distance as similarity measure between
two symbolic sequences. The method codification and the experimental tests was
built using R Language.

In our experiments we used 20 time series datasets provided by the UCR
Time Series Data Mining Archive [13] that contains artificial and real-world
data. The dataset features are presented in Table 2, such as dataset name, the
number of classes (NC), the size of training set (STr), the size of testing set
(STe) and the time series length (LS).

Table 1. Summary of datasets.

Dataset Name NC STr STe LS Dataset Name NC STr STe LS

Synthetic Control 6 300 300 60 FaceFour 4 24 88 350
Gun-Point 2 50 150 150 Lightning2 2 60 61 637

CBF 3 30 900 128 Lightning7 7 70 73 319
FaceAll 14 560 1690 131 ECG 2 100 100 96

OSU Leaf 6 200 242 427 Adiac 37 390 391 176
Swedish Leaf 15 500 625 128 Yoga 2 300 3000 426

50words 50 450 455 270 Fish 7 175 175 463
Trace 4 100 100 275 Beef 5 30 30 470

Two Patterns 4 1000 4000 128 Coffee 2 28 28 286
Wafer 2 1000 6174 152 Olive Oil 4 30 30 570

We performed experiments on different combinations of dimensionality re-
duction and alphabet size for each dataset and for each symbolic representation
method. The alphabet size a was evaluated in the interval from 2 until 20 and
the dimensionality w in the interval from 2 until 50% of time series length. Each
time we increase by two the value of w.

In order for select the parameters w and a for the testing set classification
we evaluated the accuracy for each symbolic representation method on training
data using leave-one-out cross validation. Sometimes, the correct selection of the
optimal values of parameters can be affected in situations where the learning set
cannot fully reflect the structure of the test set [14]. Therefore, we have chosen
the parameters with the ten best accuracy results for the testing data evaluation.
After, the best accuracy among these ten results on each dataset is used for
comparison with the other symbolic representations approaches.

The experimental results are shown in Table 2. Accuracy performance for the
methods SAX, ESAX, EFVD, EWD and EFD are presented in the 2nt, 3rd, 4th,
5th and 6th columns, respectively (the best accuracy results are bolded). Also
the parameters w and a are presented for the methods ESAX, EFVD, EWD and
EFD in the 7th, 8th, 9th and 10th columns, respectively (the w value for SAX
is a third of ESAX).

As recommended in [15], in order to show that an algorithm is useful, it is
necessary predict ahead of time when the method will have superior accuracy.
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Table 2. Experimental 1-NN classification results.

Name Accur. Accur. Accur. Accur. Accur. w/a w/a w/a w/a
Dataset SAX ESAX EFVD EWD EFD ESAX EFVD EWD EFD

ECG200 0.9000 0.8700 0.9500 0.9400 0.9400 96/7 38/19 38/19 42/19

Synthetic 0.9867 0.9833 0.9633 0.9567 0.9500 36/13 14/17 12/10 12/10

Coffee 0.8929 0.9643 0.9643 0.9286 0.9643 396/19 20/3 46/13 52/20

CBF 0.9170 0.8989 0.9456 0.9856 0.9478 30/14 22/11 8/5 20/9

Beef 0.5667 0.5400 0.8000 0.6333 0.6000 84/16 190/2 50/20 202/10

Trace 0.7300 0.7100 0.8100 0.8200 0.8700 132/16 82/7 106/8 48/6

SwedishLeaf 0.7648 0.7984 0.8272 0.8144 0.8432 126/18 58/20 58/20 48/18

OliveOil 0.1667 0.1667 0.8333 0.8333 0.9000 12/2 220/20 200/18 212/19

OSULeaf 0.5290 0.5248 0.5579 0.5620 0.5827 156/11 58/17 82/8 170/4

Lightining2 0.7705 0.7869 0.8197 0.7869 0.7705 18/19 76/8 52/16 24/18

Lightining7 0.6576 0.5480 0.5617 0.6165 0.5891 18/11 24/19 8/6 4/3

Gun Point 0.8200 0.8267 0.9067 0.9333 0.9267 18/19 44/19 50/19 46/7

FaceFour 0.7387 0.8523 0.7728 0.8296 0.8750 36/18 16/4 28/2 26/7

FaceAll 0.7006 0.7172 0.7385 0.7379 0.7299 108/14 36/19 40/19 38/14

Adiac 0.1637 0.1586 0.5729 0.6599 0.7238 240/19 52/20 82/16 80/18

50words 0.6022 0.6726 0.6374 0.6506 0.6286 48/7 20/14 24/12 32/7

Fish 0.6915 0.6972 0.8343 0.8458 0.8629 312/15 120/19 68/17 202/8

Two Patterns 0.9370 0.7340 0.9085 0.8890 0.8980 54/5 24/5 18/15 18/9

Yoga 0.8220 0.8230 0.8180 0.8320 0.8220 576/16 78/10 106/16 104/6

Wafer 0.9924 0.9926 0.9889 0.9940 0.9932 78/4 12/3 48/2 42/2

They proposed the calculus of the function gain = A/B to measure the expected
gain (on training data) and the actual gain (on testing data). The values A and
B represents the accuracy performance for a method A and for a method B, re-
spectively. In the Figure 3 is presented the comparison gain for EFV D/ESAX,
EFD/EFD and EFD/ESAX. We remove the datasets OliveOil (gain > 5)
and Adiac (gain > 2.5) to the best visualization of the charts. The region TP
(True Positive) indicates: the method A is more accurate than B for training and
testing; the region TN (True Negative): the method B is more accurate than A
for training and testing; the region FN (False Negative): the method A is more
accurate than B for testing but not for training; the region FP (False Positive):
the method B than A is more accurate for testing but not for training.

In the Figure 4 we summarize some results by plotting the dimensionality
reduction performance for each dataset into pairwise scatter plots. The points
above the diagonal line indicate that the method in the horizontal-axis has a
greater dimensionality reduction, and the points below the diagonal line indicate
that the method in the vertical-axis has a greater dimensionality reduction.

In the statistical evaluation of the symbolic representations performance, we
use the approach applied in [14]. The Iman and Davenport version of the F-test
is used to test the null-hypothesis that all symbolic representations have the
same performance and the observed differences are merely random. As post hoc
test we used the Nemenyi test to compare all methods to each other.
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Fig. 3. Gain accuracy comparisons.

In our accuracy analysis the corresponding critical value is equal to 3.92
for α = 0.05 (mean ranks: SAX=3.88, ESAX=3.70, EFVD=2.73, EWD=2.28,
EFD=2.33). The null-hypothesis that all methods has the same accuracy is re-
jected (p-value is 0.025). In the post hoc test the rejected comparisons are:
EWDvsSAX, EFDvsESAX, EWDvsESAX and SAXvsEFD.

Fig. 4. Dimensionality reduction comparisons.

5 Discussion

Time series data mining techniques have become an important tool to discover
novel relevant patterns that can help in decision making process. The human
decision making in time series analysis is commonly based on domain expert
perceptions [9]. In this cases, a symbolic representation is preferred instead a
numerical representation [12] and the symbols should preserve the underlying
information [6].

The SAX symbolic representation has been widely used in the literature [5,
2, 7] due to fast processing and smoothing the noise. However, this approach
causes a high possibility to miss important patterns in time series data, such as
the local trend of the time series [10]. Furthermore, the Gaussian assumption of
the symbols distribution has effects on the SAX performance for non-uniform or
correlated time series [7]. The ESAX representation was proposed to minimize
the missing of the local trend information of the symbols, but the ESAX has
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a poor dimensionality reduction and presents the same SAX problems for non-
uniform time series.

In this context, we proposed a new symbolic representation method to ex-
clude the existing problems in SAX and ESAX. Our method introduces one inter-
mediate step between dimensionality reduction and symbol creation to preserve
the approximated local slope information into the symbols. We also introduce
three new discretization algorithms: EFVD, EWD and EFD. The last two are
our modifications of existing methods.

The classification accuracy and the dimensionality reduction are the param-
eters of interest evaluated in this work. In particular, to the approaches based
on the preservation of the slope information is desirable to maintain a similar
performance or better than SAX to these parameters.

According the charts in the Figure 4 we can see that our method outperforms
the dimensionality reduction of the ESAX for most datasets. Furthermore, the
results presented in the Figure 3 demonstrate the ability of our method to predict
ahead of time when it will have superior accuracy or not. Note in the charts that
the most points are into region TP.

Comparing our method EFVD/EWD/EFD and the SAX/ESAX approaches
for each dataset accuracy (results in the Table 2) we can observe some very good
improvement cases, such as for the datasets Beef, Olive Oil, Adiac and Fish. By
the other hand, SAX/ESAX approaches do not present expressive improvement
for any dataset. For the dimensionality reduction, only the Olive Oil dataset
presented a poor result to our method.

The statistical evaluation indicates that our method using the EFD and
EWD discretization approaches, are more accurate than SAX and ESAX for
one nearest neighbor classification. For EFVD, no statistical significant differ-
ence in comparison to the other approaches, therefore we can consider that the
EFVD have equivalent accuracy performance them. Furthermore, the EFVD
discretization do not need to use a training set to calculate the centroids in a
previous step, such as need EWD and EFD.

The experimental evaluation presented in this work has demonstrated the
competitivity of our method in comparison to SAX and ESAX. In particular,
our method is a good symbolic representation alternative to preserve the local
slope information, instead ESAX, since has better performance on dimensionality
reduction and classification accuracy.

6 Conclusions and Future Works

In this paper we have presented a symbolic representation method to preserve
the slope information between the time series segments. We have performed a
evaluation on 20 widely used datasets including artificial and real-world time
series. The experimental results analysis demonstrate the effectiveness of our
representation method in time series classification for low error rates and for
dimensionality reduction in comparison with SAX and ESAX approaches.

Future works include the application of the other techniques on our method
to improve the dimensionality reduction, such as Adaptive Piecewise Constant
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Approximation; evaluate other distance measures, such as Dynamic Time Warp-
ing and others Lp-norms; and also test different classification algorithms.

Acknowledgments. We would like to acknowledge Dr. Eamonn Keogh for his
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