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Abstract—The feature selection process aims to select a
subset of relevant features to be used in model construction,
reducing data dimensionality by removing irrelevant and re-
dundant features. Although effective feature selection methods
to support single-label learning are abound, this is not the
case for multi-label learning. Furthermore, most of the multi-
label feature selection methods proposed initially transform the
multi-label data to single-label in which a traditional feature
selection method is then applied. However, the application of
single-label feature selection methods after transforming the
data can hinder exploring label dependence, an important issue
in multi-label learning. This work proposes a new multi-label
feature selection algorithm, RF-ML, by extending the single-
label feature selection ReliefF algorithm. RF-ML, unlike strictly
univariate measures for feature ranking, takes into account
the effect of interacting attributes to directly deal with multi-
label data without any data transformation. Using synthetic
datasets, the proposed algorithm is experimentally compared
to the ReliefF algorithm in which the multi-label data has
been previously transformed to single-label data using two well-
known data transformation approaches. Results show that the
proposed algorithm stands out by ranking the relevant features
as the best ones more often.

Keywords-feature ranking; filter feature selection; Hamming
distance; RReliefF; systematic review

I. INTRODUCTION

Feature Selection (FS), usually applied as a data prepro-
cessing step in machine learning and data mining, aims to
find a small number of features that describes the dataset
as well as or even better than the original set of features
does [1]. FS provides support to tackle the “curse of dimen-
sionality” problem by removing irrelevant and/or redundant
features, speeding up learning algorithms and sometimes
improving their performance [2].

Feature selection has been widely considered to support
single-label learning, where each example (or instance) in
the dataset is associated with only one class. However, this
is not the case in multi-label learning, where each example
is associated with a subset of labels, i.e., each example can
simultaneously belong to multiple classes. In fact, the main
difference between multi-label and single-label learning is
that classes in multi-label learning are often correlated,
while the class values in single-label learning are mutually
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exclusive.

Multi-label learning is an emerging research topic due to
the increasing number of applications where examples are
annotated using more than one class, such as bioinformatics,
emotion analysis, semantic annotation of media and text
mining [3].

However, research on multi-label feature selection is
scarce. The standard approach [4], which transforms multi-
label data into one or more single-label data before selecting
features is often used. Nevertheless, this transformation can
hinder exploring label dependence, an important issue in
multi-label learning [5].

In this work, we propose an extension of the single-
label ReliefF algorithm [6] for multi-label feature selection,
named RF-ML, which deals with multi-label data directly,
i.e., without any data transformation. In addition, it takes
into account, as ReliefF does, the effect of interacting
attributes [7]. Experimental results in synthetic datasets show
that RF-ML ranks the relevant features as the best ones more
often when compared to the single-label ReliefF algorithm
in which the multi-label data has been transformed using
two well-known data transformation approaches.

The rest of this paper is organized as follows: Section II
briefly presents multi-label feature selection and Section III
summarizes related work carried out by a systematic lit-
erature review. ReliefF and the proposed algorithm RF-
ML are described in Section IV. Section V describes and
discusses the experimental evaluation. Section VI concludes
and highlights future work.

II. BACKGROUND

This section presents basic concepts and terminology of
multi-label learning and FS.

A. Multi-label learning

Let D be a dataset composed of N examples E; =
(x;,Y;), i = 1..N. Each example (instance) F; is associated
with a feature vector x; = (21, %42, ..., 2 ) described by
M features (attributes) X,;, j = 1..M, and its multi-label
Y;, which consists of a subset of labels Y; C L, where
L = {y1,y2,...Yq} is the set of ¢ labels. Table I shows this



representation. In this scenario, the multi-label classification
task consists in generating a classifier H which, given
an unseen instance E = (x,7?), is capable of accurately
predicting its multi-label Y, i.e., H(E) — Y.

Table T
MULTI-LABEL DATA.

X, Xo ... Xmr Y
Ey T11  T12 TiM Y1
Ey To1 T2 ... Tam Yo
En TN1 TN2 TN M Yy

Multi-label learning methods can be organized into two
main categories: algorithm adaptation and problem trans-
formation [3]. The first one consists of methods which
extend specific learning algorithms to handle multi-label
data directly, such as Multi-label Naive Bayes (MLNB) [8].
The second category is algorithm independent, allowing one
to use any state of the art single-label learning method.
Methods which transform the multi-label classification prob-
lem into either several binary classification problems, such
as the Binary Relevance (BR) approach or one multi-class
classification problem, such as the Label Powerset (LP)
approach, fall within this category. Recall that single-label
learning is called binary whenever the class value can take
two values, and it is called multi-class whenever the class
value can take more than two values.

B. Multi-label feature selection

Most of the multi-label feature selection methods pro-
posed [4] use the problem transformation approach to previ-
ously transform multi-label data into single-label data using
BR or LP, for example. As this approach is algorithm
independent, it allows one to use any single-label FS algo-
rithm. On the other hand, few multi-label feature selection
methods that directly deal with multi-label data have been
proposed [3], [8].

Regardless of the multi-label learning approach, any fea-
ture selection method addresses two relevant issues: inter-
acting with the learning algorithm and evaluating feature
importance.

Considering the interaction with the learning algorithm,
there are three feature selection approaches: wrapper, em-
bedded and filter [1]. The first two approaches strongly
interact with the learning algorithm. Wrappers use a specific
learning algorithm as a “black box” to evaluate feature im-
portance. Conversely, the embedded approach incorporates
feature selection during training of the learning algorithm,
as decision trees do.

Unlike the wrapper and embedded approaches, filters
remove irrelevant and/or redundant features regardless of

the learning algorithm. They only use general properties of
the dataset to perform feature selection. Thus, the features
chosen may not be the best ones for specific learning
algorithms. The FS algorithms used in this work fall within
this approach.

Another important issue is how the evaluation of the
features is tackled by the feature selection algorithm, i.e.,
whether the quality of the features is estimated individually
or in subsets. The filter feature ranking methods used in this
work evaluate one feature at a time.

III. RELATED WORK

Feature selection has been an active research topic in
supervised learning, with several related publications and
comprehensive surveys [2], [3], [1]. However, most of the
research related to supervised feature selection has been
mainly proposed to support single-label classification, and
few results on multi-label classification have been reported.

A systematic review process, a method to perform a wide,
replicable and rigorous bibliographic review, was carried
out in [4] and was recently updated to search for multi-
label feature selection publications. Results gathered from
60 selected papers suggest a growing interest in the subject.
Table II summarizes related multi-label filter FS publications
which consider label dependence.

Table 11
MULTI-LABEL FILTER FEATURE SELECTION PUBLICATIONS.

Reference [ Feature importance measure

9] chi-squared
[10] information gain
[11] mutual information

[12] correlation-based feature selection
[13] symmetrical uncertainty

[14] relieff/f-statistic

[15], [16] information gain/relieff

[17] mutual information

Unlike strictly univariate measures, single-label ReliefF
takes into account the important issue of interacting at-
tributes during feature ranking [7], which makes it one of
the most well-known single-label FS algorithms. In what fol-
lows, we focus on publications using the ReliefF algorithm
for multi-label feature selection.

Two multi-label FS methods, RF-BR and RF-LP, in which
ReliefF is used in conjunction with data transformation ap-
proaches, are presented in [16], [15], [18]. RF-BR transforms
a multi-label dataset into q single-label ones, applies the
conventional ReliefF in each binary dataset and selects the
features with average weight greater than or equal to a
threshold. On the other hand, RF-LP transforms the multi-
label dataset into a multi-class dataset and applies ReliefF
once to select the features with weight greater than or equal
to a threshold. Results in ten benchmark datasets for RF-
BR and RF-LP show that both methods select subsets of



features, which do not diminish the quality of the classifiers
constructed using these features.

In [14], ReliefF is extended by analyzing pairs of labels
and ignoring instances in which both labels co-occur. The
performance of the classifiers constructed using the features
selected in three image annotation datasets are usually better
than the ones obtained by RF-BR and RF-LP.

IV. THE PROPOSED ALGORITHM: RF-ML

As the proposed algorithm is built upon ReliefF and RRe-
liefF, we first briefly review the earlier Relief algorithms.
The main idea of Relief for binary data is to reward a feature
for having different values on a pair of the nearest examples
from different classes, and penalize it for having different
values on examples from the same class [7]. ReliefF extends
Relief to deal with multi-class, missing and noisy data by
using k£ > 1 nearest neighbors. Finally, RReliefF extends
ReliefF to deal with regression problems, in which the
predicted values (class) are continuous. To avoid searching
for examples from the same class in those problems, the
probability that the predicted values of two examples are
different is introduced. This probability is modeled as a
dissimilarity function between the predicted values of the
examples [6].

As Kononenko and Robnik—éikonja showed [19], Reli-
efF and RReliefF have similar weighting schemes. Indeed,
RReliefF uses the Bayes’ rule to approximate the ReliefF
weighting, not needing probabilities of examples from the
same class.

Based on ReliefF and RReliefF, we propose the RF-ML
algorithm (Algorithm IV.1) for multi-label feature selection.
RF-ML is similar to RReliefF, but it searches for k near-
est multi-label instances and uses a dissimilarity function
mld(.,.), which deals with multi-labels instead of single-
labels (Lines 9 and 13). It should be emphasized that RF-
ML takes into account the effect of interacting attributes
by analysing dissimilarity between instances, as ReliefF and
RReliefF do.

Note that mld(E,, Ep) can be any dissimilarity function
in the multi-labels Y, and Y3, such as the Hamming Distance
(HD). The HD between two sets (multi-labels) is defined
as Y, UYs| — |Y, N Y. Thus, it counts the number of
labels which are different in Y, and Y;. Observe that the
HD considers the presence and absence of labels equally. For
example, the HD between Y, = {y3,v6} and Y, = {y1,v4}
is 4, the same as the HD between Y, = {y2,y3, y5, ys } and
Yy, = {y1, Y2, Y4, ys5}. In this work, we used the normalized
HD, given by Equation 1.

Y, UY| =Y, NY,
HD(Y,,Y;) = Yo UYs| — [Yo N Yo (1
q
Similar to RReliefF, RF-ML specifies the partial weights
Way, Wax and Wyyx according to dissimilarities be-
tween labels, feature values and labels A feature values,

Algorithm IV.1 ReliefF for Multi-label Feature Selection:
RF-ML
Input: Dataset D
Number of iterations c
Number of nearest neighbors k
Output: Vector of feature importance values W
1: Way <0 > Label dissimilarities

: Wax < 0 > Feature dissimilarities
c Wayx <0 > Label and feature dissimilarities
W«
fori=1—cdo

E; + randomInstance(D)

EK <+ kNearestNeighbors(k, E;, D)

for z=1—k do
9: Way < Way +mld(E;, EK.) x d(E;, EK)
10: for j=1— M do
11: de(X]')(—de(Xj)+diff(Xj,Ei,EKz)><
12: d(E;, EK)
13: Wdyx(Xj)(—Wdyx(Xj)—led(Ei,EKz)X
14: dif f(X;,Ei, EK.) x d(E;, EK)
15: end for
16: end for
17: end for
18: for j =1 — M do
19: W(X;) « Way x(X;)  Wax(X;)—Way x (X;)

Way c=Way
20: end for

e A Al

respectively. Furthermore, both algorithms support distance
weighting by the term d(E;, EK,) and estimate the output
W by combining the partial weights in an equation given
by Bayes’ rule (Line 19). The dif f(X;, E;, EK ) metric
calculates the difference between the values of a feature X
in two instances F; and FK .

The complexity of traditional Relief-based algorithms [6],
as well as the proposed algorithm RF-ML, is bound to the
search for the k nearest instances, i.e., O(N?.M), where N
is the number of instances and M is the number of features.
In fact, the N2 term in the upper bound is reached when
¢ = N (default ReliefF configuration), which is important to
obtain reliable results from the algorithm. On the other hand,
RF-BR clearly has a higher complexity, i.e., O(N?.M.q), as
it has to estimate the ReliefF weights ¢ times, one per label.

V. EXPERIMENTAL EVALUATION

This section presents an experimental comparison in syn-
thetic datasets among the three multi-label FS algorithms:
RF-BR, RF-LP and RF-ML. All methods were implemented
using Mulan!, a Java package for multi-label learning based
on Weka?. Appart from the dissimilarity function in RF-ML,
set as Hamming distance, all parameters were executed with
default values.

A. Synthetic datasets
Synthetic (or artificial) datasets are useful to evaluate
algorithms, as they provide researchers with a controlled

Uhttp://mulan.sourceforge.net
Zhttp://www.cs.waikato.ac.nz/ml/weka
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environment based on known properties of the datasets [20].
In fact, showing the improvements of an algorithm on
synthetic data sets can be more convincing that doing so
in typical real world scenarios where the true solution is
completely unknown [21].

However, few publicly available strategies to generate
synthetic multi-label datasets have been provided. To this
end, we have developed a publicly available framework
Midatagen® [22]. Up to now, Mldatagen implements two
different strategies (HyperCubes and HyperSpheres) which
are based on the one proposed by Zhang et al. [8]. More-
over, Mldatagen outputs the datasets in the well-known
Mulan framework format*. After choosing the strategy, some
mandatory parameters must be set, such as: the number
of relevant (M,.q;), irrelevant (M;,..) and redundant (M,..4)
features; number of labels (¢) and number of instances (V)
of the dataset. It is also possible to set several other optional
parameters which have default values, such as the noise level
.
In this work, we use the HyperCubes strategy to generate
45 synthetic datasets (9 settings X 5mnoiselevels), with
M = M,¢ + M,;,, features, for different values of M.,
M, N, q and five noise levels (u): 0%, 5%, 10%, 20%
and 40%. Table III describes the nine datasets created for
each noise level.

Table III
NINE SYNTHETIC DATASETS WITH SAME NOISE LEVEL.

N =10000 | N =5000 | N = 2000

q = 100 q =30 q =10
My = 10, My = 10 dataset datasety datasetr
Myer =5, Mipr =15 dataseta datasets datasetg
Moy =1, M =19 datasets datasetg datasetg

By inserting noise in a multi-label dataset, new combina-
tions of labels can arise. In fact, the higher the noise level,
the higher the number of distinct combinations of labels is.

B. Evaluation measure

To evaluate the features selected, the Area Under the
Curve for Feature Ranking evaluation (FR-AUC) is used.
Considering M,.; and M;,.. as the lengths of the y and x-axis
respectively, the feature ranking is analyzed in descending
order, such that the best ranked feature is taken into account
first. For each feature X, the curve increases one unit in
the y-axis if X is relevant (XR); otherwise, it increases one
unit in the x-axis (Xj). FR-AUC is the area under this curve,
normalized by M,.; X M, i.e., the maximum possible FR-
AUC value. Thus, the FR-AUC value ranges from 0 to 1. The
higher the FR-AUC value, the better the ranking is.

To illustrate this, consider a  dataset
My = 5 My, = 15 and feature

with
ranking

3http://sites.labic.icmc.usp.br/mldatagen
“4http://mulan.sourceforge.net/format.html

(XR,XR,X[,XR,XR,X[,X[,XR,X[,. . .,X]). Figure 1
shows the curve and the area under the curve obtained from
this ranking.

Relevant
2N e Ao

10 11 12 13 14 15
Irrelevant

Figure 1. Area under curve for feature ranking: FR-AUC.

C. Results and discussion

As already mentioned, RF-BR, RF-LP and the pro-
posed algorithm RF-ML were experimentally compared in
45 synthetic datasets according to the FR-AUC evalua-
tion measure. Due to lack of space, in what follows,
the main results are presented. Detailed results showing
the FR-AUC and the feature rankings for all datasets can
be found at http://www.labic.icmc.usp.br/pub/mcmonard/
ExperimentalResults/BRACIS2013.pdf.

Table IV shows the number of times in which FR-AUC
did not achieve its maximum value for each noise level (9
datasets) and all the 45 datasets.

Table IV
NUMBER OF CASES IN WHICH FR-AUC DID NOT ACHIEVE ITS
MAXIMUM VALUE.

[ RF-BR | RF-LP | RF-ML

n=0% |1 2 0
n=>5% |1 5 0
pn=10% | 1 6 0
n=20% |3 7 0
n=40% | 6 8 5

all 45 datasets | 12 28 5

% | 27% 62% 11%

As can be observed, RF-ML obtained better results than
RF-BR and RF-LP in all cases, failing to achieve the best
FR-AUC value in only 11% of the cases. In fact, up to a
noise level of 20%, RF-ML always found the best features,
i.e., FR-AUC = 1. It only failed when the noise level reaches
40%, suggesting robustness to noise. RF-BR obtained the
second best results, although it failed more than twice as
much as RF-ML (12 against 5) in achieving the maximum
FR-AUC value.

The FR-AUC value was used to rank the results obtained
for each noise level averaged across the nine datasets with
the same noise level. Table V presents these results, where
the best ones are highlighted in bold.

Note that RF-ML stands out in all these results, leading to
the lowest average rankings, followed by RF-BR. However,
as mentioned in Section IV, the complexity of RF-BR is
higher than the one of RF-ML, as it has to apply ReliefF ¢
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Table V
AVERAGE RANKING (AND STANDARD DEVIATION) OF FR-AUC.

[ RF-BR | RF-LP | RF-ML

w=0% | 204 22(0.5) | 1.8 (0.3)
uw=>5% | 1.8 (0.3) | 2.6 (0.5) | 1.7 (0.4)
w=10% | 1.7 (0.3) | 2.7 (0.5) | 1.6 (0.3)
uw=20% | 1.8 (0.5) | 2.7 (0.6) | 1.4 (0.3)
w=40% | 1.7 (0.4) | 2.9 (0.3) | 1.4 (0.5)

all datasets | 1.8 (0.4) [ 2.6 (0.5) | 1.6 (0.4)

times. As in Table IV, Table V shows that RF-LP obtained
the worst results.

By analyzing the results according to p in Table V, the
higher the noise, the better the RF-ML average ranking is,
strengthening its robustness to noise. On the other hand, RF-
LP shows opposite behavior, which can be associated to the
relation between p and the number of distinct combinations
of labels (Section V-A). In fact, RF-LP is sensitive to this
number, as it transforms each different multi-label into a
new single-label class value.

As mentioned, RF-ML leads to the highest percentage of
maximum FR-AUC. The few datasets in which FR-AUC was
not maximum have the highest noise (1 = 40%). These
datasets are indeed hard to analyze, since there is 40%
probability of changing a label in the multi-label of each
example.

To verify if the difference among the methods is signif-
icant, we ran the Friedman’s test with 95% of confidence
level followed by the Nemenyi’s post hoc test. Significant
differences were found for p = 20% and 40%, in which the
average rankings differ by at least the Critical Difference
(CD) [23]. Figure 2 shows the graphical representation of
these results.

D

_
1 2 3

RF-ML 4-'_ L RF-LP

RF-BR —M8M8™—

(a) Datasets with p = 20%.

D

i
1 2 3

RF-ML 4"_ L RF-LP

RF-BR —m

(b) Datasets with u = 40%.

Figure 2. Diagram of the Nemenyi’s post hoc test. Methods which are
not significantly different at p < 0.05 are connected.

For p = 20%, Figure 2a shows that there is a significant
difference among RF-ML and RF-LP. For p = 40%,
Figure 2b shows that both, RF-ML and RF-BR, are signif-
icantly better than RF-LP. Although there is no significant
difference between RF-ML and RF-BR, in both cases RF-ML
is ranked first. Nevertheless, in all the five cases analyzed,

RF-ML is always ranked first, which strengthens RF-ML as
a multi-label feature selection method.

VI. CONCLUSION

This work presents RF-ML, a new multi-label feature
selection algorithm based on ReliefF and RReliefF, which
uses a dissimilarity function in the multi-labels to find the
nearest instances as a partial weight to estimate feature
importance. Thus, no data transformation is required by RF-
ML. The experimental evaluation in controlled environments
shows that RF-ML, using the Hamming distance as the
dissimilarity function, ranks first all the relevant features in
89% of all the 45 cases considered. Moreover, it outperforms
two other methods, RF-BR and RF-LP, which use two
well-known data transformation approaches and single-label
ReliefF to rank the features.

As future work, we plan to evaluate other similarity
functions which do not consider equally the presence and
absence of labels in the multi-labels, as the Hamming
distance does. In addition, we plan to compare RF-ML in
benchmark and real multi-label datasets with other feature
selection algorithms which also consider feature interactions,
such as CFS [12]. Furthermore, to deal with large datasets
we plan to parallelize the RF-ML implementation to speed
up its execution, as suggested in [19].
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