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Abstract   Feature selection is a task potentially useful to improve data min-

ing, as it can find a subset of the data features that are relevant to the class 

and support pattern extraction. Many data mining applications, such as im-

age annotation, deal with multi-label data, in which each instance is associat-

ed with one or more labels. Feature selection has successfully supported 

learning by using approaches such as label powerset, which transforms the 

multi-label data into a format compatible with traditional algorithms. In this  

work, we combined this approach with 3 algorithms – Correlation-based fea-

ture selection, ReliefF and Information Gain. To compare the resulting multi-

label feature selection methods, we evaluate the performance of multi-label 

classifiers built from the features selected in 5 benchmark datasets. As a re-

sult, ReliefF highlighted in terms of F-measure, Hamming Loss and Accura-

cy. Moreover, all methods outperformed a baseline, suggesting their competi-

tiveness. 

1 Introduction   

The Knowledge Discovery in Databases (KDD) process has been useful to gain 

understanding of the data and assist decision making [1]. To do so, pre-processing 

tasks such as Feature Selection (FS) are typically applied before other KDD steps. 

In particular, FS can be defined as a process of searching for a subset of important 

features in terms of an importance measure or criterion that reflects relevance 

and/or non redundancy of features  [2]. Afterwards, it removes the remaining fea-
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tures. This process leads to a potential reduction of “curse of dimensionality” ef-

fects that impair the learning from data. 

FS algorithms have traditionally been applied into single-label datasets, in 

which each instance (or example) is associated with a unique label (target con-

cept). However, the data inherent to some emerging applications, such as emotion 

analysis and image annotation, includes instances associated with two or more la-

bels, leading to multi-label datasets [3, 4]. Besides dealing with multiple labels 

simultaneously, feature selection algorithms for multi-label data should take into 

account the dependency among labels to provide better support for data mining. In  

fact, considering label dependence for multi-label FS has led to good results , as 

some recent surveys indicate [5, 6].  

In this work, we aim to compare feature selection methods able to explore label 

dependence. In particular, we choose three traditional algorithms: Correlation-

based Feature Selection (CFS), ReliefF (RF) and Information Gain (IG). To make 

their application within the multi-label scenario possible, we combine the algo-

rithms with the Label Powerset (LP) approach [4], which preserves relations 

among labels. Afterwards, an experimental evaluation of these methods in five 

benchmark datasets assesses their ability to assist multi-label learning. To the best 

of our knowledge, these methods have not been compared. 

The rest of this work is organized as follows. Sections 2 and 3 describe multi-

label learning and feature selection methods, respectively. Section 4 presents the 

experimental settings used to obtain the results discussed in Section 5. Section 6 

concludes this paper. 

2 Multi-label learning 

Let D be a dataset composed of N instances Ei = (xi, Yi ), i = 1...N. Each instance 

Ei in turn is associated with a feature vector xi = (xi1, xi2, …, xiM) described by M 

features Xj , j = 1…M, and its multi-label Yi, which consists of a subset of labels Yi 

⊆ L, where L = y1, y2, …, yq is the set of q labels. Table 1 shows this representa-

tion. In this scenario, the multi-label classification task consists in generating a 

classifier H that, given a new instance E = (x, ?), is capable of accurately predict-

ing its multi-label Y, i.e., H(E) → Y. 

Table 1 Multi-label data definition.  

 X1 X2 XM Y 

E1 x11 x12 x1M Y1 

E2 x21 x22 x2M Y2 

... ... ... ... ... 

EM xN1 xN2 xNM YN 
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The main difference between multi-label and single-label learning is that the 

former deals with a set of labels often correlated, whereas the latter considers pos-

sible values of the class (labels) that are mutually exclusive. In single-label classi-

fication, each instance Ei is associated with only one class value, which in turn is 

the label yi contained in the set of labels L, i.e., yi ∈ L, with |L| > 1. If there are 

two or more possible class values (|L| > 2), the problem is named multi-class clas-

sification. If the class value is yes or no, the problem is named binary classifica-

tion. 

2.1 Learning methods   

Multi-label learning methods can be organized into two main categories [3, 4]: 

• Problem Transformation: transforms the multi-label dataset into one or more 

single-label datasets. After processing, traditional classification algorithms are 

used to solve the single-label problem(s) separately. This category is illustrated 

by the Label Powerset (LP) approach; 

• Algorithm Adaptation: learns from multi-label datasets directly, i.e., without 

transforming them, after adapting specific learning algorithms. A method that 

exemplifies this category consists in Binary Relevance k  Nearest Neighbor 

(BRkNN) [7]. 

LP transforms a multi-label dataset into a single-label (multiclass) one by map-

ping each distinct multi-label Y into a single class value. Although LP can lead to 

the imbalance problem in multi-class data if the number of distinct multi-labels is 

high, it partially considers the label dependence by preserving label relations .  

In this work, we use LP to convert the multi-label data into a format compatible 

with the input expected by the single-label feature selection algorithms chosen.  

The BRkNN classification method adapts the lazy k  nearest neighbor algorithm 

to efficiently deal with multi-label data, searching for the neighbors only once. 

This method was extended in [7] to take into account a label confidence value, es-

timated for each label according to the percentage of the k  neighbors that contains 

this label. In particular, the BRkNN-b extension uses a more sophisticated strategy 

to specify this percentage, which considers the average size of the multi-labels of 

the neighbors.  

We apply BRkNN-b to build classifiers from the data described only by the fea-

tures chosen by each feature selection method, as lazy algorithms are susceptible 

to irrelevant features. The better the classifier, the better the FS method is. Section 

4 indicates the measures considered by us to evaluate the learning performance. 
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3 Feature selection   

Regardless of the multi-label learning approach, any FS method addresses a few 

relevant issues, such as the importance measure and the interaction with the learn-

ing algorithm. In particular, three approaches determine different interactions be-

tween a FS method and the learning algorithm: wrapper, embedded and filter [2]. 

The first two approaches strongly interact with the learning algorithm. On the oth-

er hand, filters use general properties of the dataset to remove unimportant fea-

tures from it, regardless of the learning algorithm. Thus, the features chosen using 

the filter approach may not be the best ones for a specific learning algorithm, as is 

the case for the wrapper and embedded approaches.  

This work evaluates the combination of three traditional filter methods with the 

Label Powerset approach to achieve multi-label feature selection. Each method 

considers a specific importance measure to evaluate features. 

3.1 Traditional algorithms 

The traditional algorithms considered in this work are Correlation-based Feature 

Selection (CFS), ReliefF (RF) and Information Gain (IG). In what follows, each 

algorithm is briefly described.  

CFS evaluates the quality of a feature subset X’ based on the predictive ability 

of each feature, i.e., the correlation between the feature and the class, as well as  

the degree of correlation between features within the subset  [8]. Thus, CFS re-

wards subsets of features highly correlated to the class and with low redundancy.  

RF, in turn, rewards a feature Xj, j = 1 … M, for having different values on a 

pair of similar instances (neighbors) from different classes, as well as penalizes it 

for having different values on similar instances from the same class [9]. Although 

RF evaluates one feature at a time, it differentiates from strictly univariate 

measures such as IG due to the consideration of the effect of interacting features, 

as all features are used to search for neighbors.  

Finally, IG evaluates each feature Xj, j = 1 … M, according to the dependence 

between Xj and the class, as defined by Equation 1. To do so, IG calculates the dif-

ference between the entropy of the dataset D and the weighted sum of the entropy 

of each subset Dv ⊆ D, where Dv consists in the set of examples where Xj has the 

value v [10]. Different from CFS and RF, IG requires a previous discretization of 

numerical features.  

 IG (D, Xj) = entropy (D) – ( ∑v |Dv| entropy (Dv) / |D| ). (1) 
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It should be emphasized that the CFS algorithm deals with features according 

to a multivariate perspective, i.e., it searches for subsets of features, evaluating 

each possible subset at a time. On the other hand, RF and IG follow a univariate 

perspective, evaluating each feature individually and ranking all of them accord-

ingly. Therefore, in their cases, a given threshold may be established on the num-

ber of features to be chosen to specify feature subsets to be submitted for FS as-

sessment. Section 4 reports the setting considered by us  to define these subsets . 

3.2 Multi-label feature selection 

An alternative to apply CFS, RF and IG for a multi-label dataset starts by applying 

a problem transformation approach, such as Label Powerset, to obtain a single-

label dataset. Afterwards, the FS algorithm can be employed in the resulting data.  

Related work contains examples of combinations between single-label FS algo-

rithms and problem transformation approaches [5, 6]. In [11], CFS is associated 

with an approach similar to LP after the use of another data transformation strate-

gy for feature selection. In addition, the feature ranking strategies RF and IG were 

applied after LP in [12], yielding the methods RF-LP and IG-LP. In this work, we 

extended the latter idea by experimentally comparing these methods with the 

combination between Correlation-based Feature Selection and Label Powerset 

(CFS-LP). It should be emphasized that, different from [11], we focus on only one 

transformation approach to reduce external influences on the feature evaluation. 

4 Experimental setting 

The experiments were carried out using 5 benchmark multi-label datasets obtained 

from the Mulan repository1. Table 2 shows, for each dataset, the number of exam-

ples (N); the number of nominal (d) and numeric (n) features that sum up to M; the 

number of labels (|L|); the Label Cardinality (LC), which is the average number of 

single-labels associated with each example; the Label Density (LD), which is the 

normalized cardinality; and the number of Distinct Combinations of labels (DC). 

Table 2 Description of the datasets used in the experiment.  

dataset M d n |L| LC LD DC 

1-corel5k 5000 499 0 374 3.52 0.01 3175 

2-corel16k001 13766 500 0 153 2.86 0.02 4803 

                                                                 
1 http://mulan.sourceforge.net/datasets-mlc.html 
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3-emotions 593 0 72 6 1.87 0.31 27 

4-flags 194 9 10 7 3.39 0.49 54 

5-scene 2407 0 294 6 1.07 0.18 15 

 

Each dataset mentioned in Table 2 is submitted to the 10-fold cross-validation 

strategy. For each dataset, the training fold i, i = 1, …, 10, is then used as the input 

for a feature selection method. The reduced version of this fold, described only by 

the chosen features, is employed to build a BRkNN-b classifier (k=10 nearest 

neighbors). The model in turn is evaluated in the corresponding reduced test fold. 

After applying the training and testing procedures for all folds in a dataset, differ-

ent multi-label evaluation measures are averaged across the 10 test folds to calcu-

late the classification performance. The better the BRkNN-b performance, the bet-

ter the FS method ability to support multi-label learning.  

In this work, we used code publicly available in the Weka [13] and Mulan [14] 

frameworks. The algorithms CFS, RF and IG were applied with the parameter set-

tings recommended by Weka. In particular, RF employs the Euclidean and the 

Overlap dissimilarity measures to find the distance between instances. IG in turn 

considers the Minimum Description Length discretization technique [15]. 

From the final feature ranking found by RF-LP and IG-LP in a dataset fold, 

nine subsets of the best features X’ ⊂ X, |X| = M, |X’| = 10%M, 20%M, …, 90%M 

are specified. On the other hand, CFS-LP, which evaluates subsets of features, al-

ready yields a unique subset of the best features X’ ⊂ X, |X’| = h%M. It should be 

emphasized that the h value is found by CFS-LP and is specific for each fold.  

In this work, we evaluate the learning performance according to three frequen t-

ly used evaluation measures described in [4]: Example-based F-measure, Ham-

ming Loss and Accuracy. These measures range in the interval [0,1]. For Ham-

ming Loss, the smaller the value, the better the multi-label classifier is, whereas 

higher values for the other measures indicate better classifiers.  

To verify the competitiveness of CFS-LP, RF-LP and IG-LP, a baseline given 

by a BRkNN-b classifier built using all features, i.e., without feature selection, is 

included in the experimental comparison presented in the next section. 

5 Results and discussion 

As mentioned, RF-LP and IG-LP yield nine X’ subsets with a predefined num-

ber of features  |X’| = 10%M, 20%M, …, 90%M. On the other hand, CFS-LP se-

lects a single subset X’, |X’| = h%M, and specifies the h value for each dataset 

fold. In what follows, the average ha values calculated across the 10 folds are giv-
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en for each dataset: ha = 24%M (corel5k), ha = 24% (corel16k), ha = 20% (emo-

tions), ha = 25% (flags) and ha = 40% (scene). As CFS-LP yields a single feature 

subset, we compared it with each subset derived from RF-LP and IG-LP. 

Regarding the evaluation of multi-label classifiers built from the FS outputs, 

Table 3 summarizes the results by showing the classifier rankings, averaged across 

the 5 datasets, for each feature subset size |X’|. In this table, the best rankings 

achieved for each measure are highlighted in bold. Note that the lower the F-

measure and Accuracy rankings, the better the classifier performances are, where-

as higher Hamming Loss rankings indicate better results. Figure 1 shows the num-

ber of times that each FS method was highlighted in Table 3. Besides including 

the ranking value achieved for each subset size and dataset, Tables A.2, A.3 and 

A.4 in Appendix detail the results in terms of the average learning performance 

and the corresponding standard deviation.  

Table 3 Average ranking (and standard deviation) estimated according to different m ult i-

label evaluation measures.  

|X’| CFS-LP RF-LP IG-LP 

F-measure 

10%M 2.10 (1.02) 1.90 (0.65) 2.00 (0.79) 

20%M 2.10 (1.02) 2.10 (0.74) 1.80 (0.84) 

30%M 2.30 (0.97) 1.60 (0.42) 2.10 (0.89) 

40%M 2.30 (0.97) 1.80 (0.76) 1.90 (0.74) 

50%M 2.20 (1.10) 1.80 (0.57) 2.00 (0.79) 

60%M 2.20 (1.10) 1.70 (0.57) 2.10 (0.65) 

70%M 2.00 (1.00) 2.10 (0.55) 1.90 (0.74) 

80%M 1.90 (1.02) 2.30 (0.84) 1.80 (0.57) 

90%M 1.80 (1.10) 2.10 (0.65) 2.10 (0.65) 

Hamming Loss 

10%M 2,20 (0,84) 1,90 (0,42) 1,90 (0,42) 

20%M 2,00 (0,71) 2,00 (0,35) 2,00 (0,35) 

30%M 1,60 (0,55) 2,20 (0,27) 2,20 (0,27) 

40%M 1,40 (0,55) 2,30 (0,27) 2,30 (0,27) 

50%M 1,20 (0,45) 2,40 (0,22) 2,40 (0,22) 

60%M 1,40 (0,55) 2,30 (0,27) 2,30 (0,27) 

70%M 1,80 (0,84) 2,10 (0,42) 2,10 (0,42) 

80%M 2,00 (1,00) 2,00 (0,50) 2,00 (0,50) 

90%M 2,00 (1,00) 2,00 (0,50) 2,00 (0,50)  

Accuracy 

10%M 2,00 (0,71) 2,10 (0.55) 1,90 (0,74) 
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20%M 2,00 (0,71) 1.80 (0.45) 2.20 (0.45) 

30%M 2,00 (1,00) 1.80 (0.57) 2.20 (0.57) 

40%M 2.10 (1.02) 1.80 (0.76) 2.10 (0.65) 

50%M 2.20 (1.10) 1.70 (0.45) 2.10 (0.89) 

60%M 2.20 (1.10) 1.60 (0.65) 2.20 (0.57) 

70%M 2.00 (1.00) 2.00 (0.79) 2.00 (0.35) 

80%M 1.90 (1.02) 2.20 (0.91) 1.90 (0.42) 

90%M 1.80 (1.10) 2.00 (0.50) 2.20 (0.67) 

 

 

Fig. 1 Number of times that each FS method achieved the highest average ranking for each 

multi-label evaluation measure.  

As Figure 1 shows, regardless of the evaluation measure considered, RF-LP 

achieved the best average ranking more often. This finding suggests that the fea-

ture selection algorithm ReliefF fitted better with the Label Powerset approach for 

multi-label learning. Moreover, one can note in Table 3 that this method achieved 

the best F-measure results on average when the number of features was smaller 

(|X’|=10%M). IG-LP comes next, with similar achievements in terms of the 

Hamming Loss measure. 

On the other hand, CFS-LP obtained few highlighted results. Thus, the evalua-

tion of feature subsets performed by CFS benefited less from label relations, in-

herent to the data transformed by LP, than the feature ranking algorithms. It 

should be emphasized, however, that CFS-LP used less features than the remain-

ing algorithms in most of the comparisons conducted, i.e., the size of its feature 

subsets was usually smaller than the ones defined for RF-LP and IG-LP. 

By taking into account Tables A1, A2 and A3 in Appendix to analyze the re-

sults achieved for each dataset, one can observe that RF-LP often achieved the 

best Hamming Loss and Accuracy results in the relatively small dataset emotions. 
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CFS-LP, in turn, is associated with a similar scenario in the dataset with the larg-

est number of distinct labels, corel16k. The same method also was highlighted in 

the F-measure and Accuracy values achieved in another relatively large dataset, 

corel5k. Finally, the IG-LP method obtained good results in flags, the unique da-

taset with numeric and nominal features. 

An issue that arises for future work is to further study the relation between FS 

algorithms properties and dataset properties. For example, one could investigate if 

algorithms that consider some relation among features, such as RF-LP and the 

multivariate CFS-LP, stand out in multi-label datasets with correlated features. 

The Appendix tables also contain detailed information regarding the compari-

son among CFS-LP, RF-LP, IG-LP and the baseline – a BRkNN-b classifier built 

using all features. Figures 2, 3 and 4, in turn, focus on the baseline results and the 

best results achieved by each FS method in each dataset, in terms of predictive 

performance and size of the feature subset (as a percentage of the number of fea-

tures M). These figures also include a Reference Point (RP) given by the best val-

ues represented in each axis. This point is taken into account by the multi-

objective optimization community to find a good compromise between potentially 

conflicting criteria [16, 17]. 

 

 

Fig. 2 Baseline results and the best FS results achieved in terms of BRk NN- b  F-m e a s u re 

performance and size of the feature subset used to build the classifier.  



10  

 

Fig 3. Baseline results and the best FS results achieved in terms  o f  BRk NN-b  H a m m i ng  

Loss performance and size of the feature subset used to build the classifier.  

 

Fig. 4 Baseline results and the best FS results achieved in terms of BRkNN-b Accuracy per-

formance and size of the feature subset used to build the classifier.   

All FS methods outperformed one or more baseline results in terms of F-

measure, Hamming Loss and Accuracy. Moreover, RF-LP and IG-LP always 

achieved results better than, or equal to, the best baseline result in all evaluation 

measures. The figures also suggest equilibrium among the FS methods, as they 

yielded a few compromises similar among themselves and close to RP. 

The lazy algorithm BRkNN-b is a good candidate to support FS evaluation, as it 

is sensitive to irrelevant features. However, some findings can be biased towards 

this algorithm. Future work will deal with this issue by extending the experimental 

comparison with more multi-label learning algorithms. 
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6 Conclusion 

This work combined the Label Powerset problem transformation approach with 3 

traditional algorithms: CFS, ReliefF and Information Gain. The corresponding 

multi-label feature selection methods  (CFS-LP, RF-LP and IG-LP) were compared 

in terms of their ability to support the building of BRkNN-b classifiers in 5 bench-

mark datasets. 

RF-LP was the best method in most of the cases, including scenarios with small 

feature subsets. This finding suggests that ReliefF fits better with Label Powerset 

to support multi-label learning with BRkNN-b. IG-LP and CFS-LP came next and 

achieved a few highlighted results . When compared with a classifier built using all 

features (baseline), the classifiers derived from all FS methods were superior in 

many cases. In particular, feature selection based on ReliefF and Information Gain 

contributed to the building of competitive classifiers in all evaluation measures. 

An idea to improve RF-LP results in datasets with numeric and nominal fea-

tures, such as flags, is to replace the Euclidean and Overlap dissimilarity measures 

with the Heterogeneous Value Difference Metric. The latter was already found as 

a superior setting in BRkNN for multi-label learning [18].  

As future work, we plan to investigate other problem transformation approach-

es that take into account label dependence, such as the pruned problem transfor-

mation approach [19]. The adaptation of traditional algorithms for multi-label da-

ta, illustrated in references indicated in [5, 6], consists in another alternative, as 

they can explore label relations. 

Acknowledgments   This research was partially supported by the Brazilian National Coun-

sel of Technological and Scientific Development. 

Appendix  

Table A1 BRkNN-b experimental results according to F-measure.  

dataset  

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=10%M 

IG-LP  

|X’|=10%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=20%M 

IG-LP  

|X’|=20%M 

corel5k 

0.20 (0.01) 

[1.0] 

0.19 (0.01) 

[2.5] 

0.19 (0.01) 

[2.5] 

0.20 (0.01) 

[1.0] 

0.18 (0.01) 

[3.0] 

0.19 (0.01) 

[2.0] 

corel16k 

0.18 (0.01) 

[3.0] 

0.20 (0.01) 

[1.5] 

0.20 (0.01) 

[1.5] 

0.18 (0.01) 

[3.0] 

0.20 (0.01) 

[2.0] 

0.21 (0.01) 

[1.0] 

emotions 

0.59 (0.05) 

[3.0] 

0.61 (0.04) 

[1.0] 

0.60 (0.04) 

[2.0] 

0.59 (0.05) 

[3.0] 

0.66 (0.06) 

[1.0] 

0.62 (0.03) 

[2.0] 
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flags 

0.71 (0.03) 

[2.5] 

0.71 (0.03) 

[2.5] 

0.72 (0.05) 

[1.0] 

0.71 (0.03) 

[2.5] 

0.71 (0.04) 

[2.5] 

0.72 (0.03) 

[1.0] 

scene 

0.67 (0.04) 

[1.0] 

0.59 (0.04) 

[2.0] 

0.54 (0.03) 

[3.0] 

0.67 (0.04) 

[1.0] 

0.65 (0.04) 

[2.0] 

0.58 (0.03) 

[3.0] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=30%M 

IG-LP  

|X’|=30%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=40%M 

IG-LP  

|X’|=40%M 

corel5k 

0.20 (0.01) 

[1.0] 

0.17 (0.01) 

[2.0] 

0.16 (0.01) 

[3.0] 

0.20 (0.01) 

[1.0] 

0.16 (0.01) 

[3.0] 

0.18 (0.01) 

[2.0] 

corel16k 

0.18 (0.01) 

[3.0] 

0.19 (0.01) 

[2.0] 

0.20 (0.01) 

[1.0] 

0.18 (0.01) 

[1.5] 

0.18 (0.01) 

[1.5] 

0.17 (0.01) 

[3.0] 

emotions 

0.59 (0.05) 

[3.0] 

0.64 (0.04) 

[1.0] 

0.63 (0.04) 

[2.0] 

0.59 (0.05) 

[3.0] 

0.65 (0.05) 

[1.5] 

0.65 (0.03) 

[1.5] 

flags 

0.71 (0.03) 

[3.0] 

0.73 (0.03) 

[1.5] 

0.73 (0.03) 

[1.5] 

0.71 (0.03) 

[3.0] 

0.72 (0.03) 

[2.0] 

0.73 (0.04) 

[1.0] 

scene 

0.67 (0.04) 

[1.5] 

0.67 (0.03) 

[1.5] 

0.66 (0.03) 

[3.0] 

0.67 (0.04) 

[3.0] 

0.70 (0.03) 

[1.0] 

0.68 (0.02) 

[2.0] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=50%M 

IG-LP  

|X’|=50%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=60%M 

IG-LP  

|X’|=60%M 

corel5k 

0.20 (0.01) 

[1.0] 

0.16 (0.01) 

[2.5] 

0.16 (0.01) 

[2.5] 

0.20 (0.01) 

[1.0] 

0.12 (0.01) 

[2.5] 

0.12 (0.02) 

[2.5] 

corel16k 

0.18 (0.01) 

[1.0] 

0.16 (0.01) 

[2.0] 

0.13 (0.02) 

[3.0] 

0.18 (0.01) 

[1.0] 

0.09 (0.01) 

[2.0] 

0.05 (0.01) 

[3.0] 

emotions 

0.59 (0.05) 

[3.0] 

0.64 (0.04) 

[2.0] 

0.67 (0.04) 

[1.0] 

0.59 (0.05) 

[3.0] 

0.65 (0.03) 

[1.5] 

0.65 (0.05) 

[1.5] 

flags 

0.71 (0.03) 

[3.0] 

0.72 (0.04) 

[1.5] 

0.72 (0.04) 

[1.5] 

0.71 (0.03) 

[3.0] 

0.72 (0.03) 

[1.5] 

0.72 (0.04) 

[1.5] 

scene 

0.67 (0.04) 

[3.0] 

0.72 (0.04) 

[1.0] 

0.70 (0.03) 

[2.0] 

0.67 (0.04) 

[3.0] 

0.73 (0.03) 

[1.0] 

0.71 (0.03) 

[2.0] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=70%M 

IG-LP  

|X’|=70%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=80%M 

IG-LP  

|X’|=80%M 

corel5k 

0.20 (0.01) 

[1.0] 

0.08 (0.01) 

[3.0] 

0.13 (0.02) 

[2.0] 

0.20 (0.01) 

[1.0] 

0.12 (0.02) 

[2.5] 

0.12 (0.02) 

[2.5] 

corel16k 

0.18 (0.01) 

[1.0] 

0.05 (0.01) 

[2.0] 

0.04 (0.01) 

[3.0] 

0.18 (0.01) 

[1.0] 

0.04 (0.01) 

[3.0] 

0.06 (0.02) 

[2.0] 

emotions 

0.59 (0.05) 

[3.0] 

0.65 (0.04) 

[2.0] 

0.66 (0.05) 

[1.0] 

0.59 (0.05) 

[3.0] 

0.66 (0.03) 

[1.0] 

0.64 (0.03) 

[2.0] 

flags 

0.71 (0.03) 

[2.0] 

0.71 (0.04) 

[2.0] 

0.71 (0.03) 

[2.0] 

0.71 (0.03) 

[1.5] 

0.70 (0.03) 

[3.0] 

0.71 (0.04) 

[1.5] 

scene 

0.67 (0.04) 

[3.0] 

0.72 (0.03) 

[1.5] 

0.72 (0.02) 

[1.5] 

0.67 (0.04) 

[3.0] 

0.72 (0.03) 

[2.0] 

0.73 (0.02) 

[1.0] 

dataset  

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=90%M 

IG-LP  

|X’|=90%M  baseline 

corel5k 

0.20 (0.01) 

[1.0] 

0.14 (0.01) 

[2.5] 

0.14 (0.01) 

[2.5]  0.16 (0.01) 
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corel16k 

0.18 (0.01) 

[1.0] 

0.07 (0.00) 

[3.0] 

0.08 (0.00) 

[2.0]  0.15 (0.01) 

emotions 

0.59 (0.05) 

[3.0] 

0.65 (0.04) 

[1.5] 

0.65 (0.04) 

[1.5]  0.64 (0.05) 

flags 

0.71 (0.03) 

[1.0] 

0.70 (0.04) 

[2.0] 

0.69 (0.03) 

[3.0]  0.69 (0.04) 

scene 

0.67 (0.04) 

[3.0] 

0.72 (0.03) 

[1.5] 

0.72 (0.02) 

[1.5]  0.73 (0.02) 

 

Table A2 BRkNN-b experimental results according to Hamming-Loss.  

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=10%M 

IG-LP  

|X’|=10%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=20%M 

IG-LP  

|X’|=20%M 

corel5k 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

corel16k 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

emotions 

0.24 (0.05) 

[1.0] 

0.23 (0.04) 

[2.5] 

0.23 (0.04) 

[2.5] 

0.24 (0.05) 

[1.0] 

0.20 (0.06) 

[2.5] 

0.20 (0.03) 

[2.5] 

Flags 

0.26 (0.03) 

[3.0] 

0.27 (0.03) 

[1.5] 

0.27 (0.05) 

[1.5] 

0.26 (0.03) 

[2.0] 

0.26 (0.04) 

[2.0] 

0.26 (0.03) 

[2.0] 

scene 

0.11 (0.04) 

[3.0] 

0.14 (0.04) 

[1.5] 

0.14 (0.03) 

[1.5] 

0.11 (0.04) 

[3.0] 

0.12 (0.04) 

[1.5] 

0.12 (0.03) 

[1.5] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=30%M 

IG-LP  

|X’|=30%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=40%M 

IG-LP  

|X’|=40%M 

corel5k 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

corel16k 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

emotions 

0.24 (0.05) 

[1.0] 

0.21 (0.04) 

[2.5] 

0.21 (0.04) 

[2.5] 

0.24 (0.05) 

[1.0] 

0.21 (0.05) 

[2.5] 

0.21 (0.03) 

[2.5] 

Flags 

0.26 (0.03) 

[1.0] 

0.24 (0.03) 

[2.5] 

0.24 (0.03) 

[2.5] 

0.26 (0.03) 

[1.0] 

0.25 (0.03) 

[2.5] 

0.25 (0.04) 

[2.5] 

Scene 

0.11 (0.04) 

[2.0] 

0.11 (0.03) 

[2.0] 

0.11 (0.03) 

[2.0] 

0.11 (0.04) 

[1.0] 

0.10 (0.03) 

[2.5] 

0.10 (0.02) 

[2.5] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=50%M 

IG-LP  

|X’|=50%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=60%M 

IG-LP  

|X’|=60%M 

corel5k 

0.02 (0.01) 

[1.0] 

0.01 (0.01) 

[2.5] 

0.01 (0.01) 

[2.5] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.02) 

[2.0] 

corel16k 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.02) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

0.03 (0.01) 

[2.0] 

emotions 

0.24 (0.05) 

[1.0] 

0.21 (0.04) 

[2.5] 

0.21 (0.04) 

[2.5] 

0.24 (0.05) 

[1.0] 

0.20 (0.03) 

[2.5] 

0.20 (0.05) 

[2.5] 

flags 0.26 (0.03) 0.25 (0.04) 0.25 (0.04) 0.26 (0.03) 0.25 (0.03) 0.25 (0.04) 
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[1.0] [2.5] [2.5] [1.0] [2.5] [2.5] 

scene 

0.11 (0.04) 

[1.0] 

0.10 (0.04) 

[2.5] 

0.10 (0.03) 

[2.5] 

0.11 (0.04) 

[1.0] 

0.10 (0.03) 

[2.5] 

0.10 (0.03) 

[2.5] 

dataset  

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=70%M 

IG-LP  

|X’|=70%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=80%M 

IG-LP  

|X’|=80%M 

corel5k 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.02) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.02) 

[2.0] 

0.02 (0.02) 

[2.0] 

corel16k 

0.03 (0.01) 

[3.0] 

0.04 (0.01) 

[1.5] 

0.04 (0.01) 

[1.5] 

0.03 (0.01) 

[3.0] 

0.04 (0.01) 

[1.5] 

0.04 (0.02) 

[1.5] 

emotions 

0.24 (0.05) 

[1.0] 

0.20 (0.04) 

[2.5] 

0.20 (0.05) 

[2.5] 

0.24 (0.05) 

[1.0] 

0.20 (0.03) 

[2.5] 

0.20 (0.03) 

[2.5] 

flags 

0.26 (0.03) 

[2.0] 

0.26 (0.04) 

[2.0] 

0.26 (0.03) 

[2.0] 

0.26 (0.03) 

[3.0] 

0.27 (0.03) 

[1.5] 

0.27 (0.04) 

[1.5] 

scene 

0.11 (0.04) 

[1.0] 

0.10 (0.03) 

[2.5] 

0.10 (0.02) 

[2.5] 

0.11 (0.04) 

[1.0] 

0.10 (0.03) 

[2.5] 

0.10 (0.02) 

[2.5] 

dataset  

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=90%M 

IG-LP  

|X’|=90%M  baseline 

corel5k 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0] 

0.02 (0.01) 

[2.0]  0.01 (0.01) 

corel16k 

0.03 (0.01) 

[3.0] 

0.04 (0.00) 

[1.5] 

0.04 (0.00) 

[1.5]  0.03 (0.01) 

emotions 

0.24 (0.05) 

[1.0] 

0.21 (0.04) 

[2.5] 

0.21 (0.04) 

[2.5]  0.21 (0.05) 

flags 

0.26 (0.03) 

[3.0] 

0.27 (0.04) 

[1.5] 

0.27 (0.03) 

[1.5]  0.27 (0.04) 

scene 

0.11 (0.04) 

[1.0] 

0.10 (0.03) 

[2.5] 

0.10 (0.02) 

[2.5]  0.10 (0.02) 

 

Table A3 BRkNN-b experimental results according to Accuracy.  

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=10%M 

IG-LP  

|X’|=10%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=20%M 

IG-LP  

|X’|=20%M 

corel5k 

0.12 (0.01) 

[2.0] 

0.12 (0.00) 

[2.0] 

0.12 (0.00) 

[2.0] 

0.12 (0.01) 

[2.0] 

0.12 (0.01) 

[2.0] 

0.12 (0.01) 

[2.0] 

corel16k 

0.13 (0.00) 

[2.0] 

0.13 (0.00) 

[2.0] 

0.13 (0.00) 

[2.0] 

0.13 (0.00) 

[2.0] 

0.13 (0.00) 

[2.0] 

0.13 (0.00) 

[2.0] 

emotions 

0.50 (0.05) 

[3.0] 

0.51 (0.04) 

[1.5] 

0.51 (0.04) 

[1.5] 

0.50 (0.05) 

[3.0] 

0.57 (0.05) 

[1.0] 

0.53 (0.04) 

[2.0] 

flags 

0.60 (0.03) 

[2.0] 

0.58 (0.04) 

[3.0] 

0.61 (0.06) 

[1.0] 

0.60 (0.03) 

[2.0] 

0.60 (0.06) 

[2.0] 

0.60 (0.04) 

[2.0] 

scene 

0.67 (0.04) 

[1.0] 

0.58 (0.04) 

[2.0] 

0.53 (0.03) 

[3.0] 

0.67 (0.04) 

[1.0] 

0.64 (0.04) 

[2.0] 

0.57 (0.03) 

[3.0] 

dataset CFS-LP  RF-LP  IG-LP  CFS-LP  RF-LP  IG-LP  
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|X’|=h%M |X’|=30%M |X’|=30%M |X’|=h%M |X’|=40%M |X’|=40%M 

corel5k 

0.12 (0.01) 

[1.0] 

0.11 (0.01) 

[2.5] 

0.11 (0.01) 

[2.5] 

0.12 (0.01) 

[1.0] 

0.10 (0.01) 

[3.0] 

0.11 (0.01) 

[2.0] 

corel16k 

0.13 (0.00) 

[2.0] 

0.13 (0.00) 

[2.0] 

0.13 (0.01) 

[2.0] 

0.13 (0.00) 

[1.0] 

0.12 (0.00) 

[2.0] 

0.11 (0.01) 

[3.0] 

emotions 

0.50 (0.05) 

[3.0] 

0.55 (0.03) 

[1.0] 

0.54 (0.04) 

[2.0] 

0.50 (0.05) 

[3.0] 

0.56 (0.05) 

[1.5] 

0.56 (0.03) 

[1.5] 

flags 

0.60 (0.03) 

[3.0] 

0.62 (0.04) 

[1.5] 

0.62 (0.04) 

[1.5] 

0.60 (0.03) 

[3.0] 

0.62 (0.04) 

[1.5] 

0.62 (0.05) 

[1.5] 

scene 

0.67 (0.04) 

[1.0] 

0.66 (0.03) 

[2.0] 

0.65 (0.03) 

[3.0] 

0.67 (0.04) 

[2.5] 

0.69 (0.03) 

[1.0] 

0.67 (0.02) 

[2.5] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=50%M 

IG-LP  

|X’|=50%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=60%M 

IG-LP  

|X’|=60%M 

corel5k 

0.12 (0.01) 

[1.0] 

0.11 (0.01) 

[2.0] 

0.10 (0.01) 

[3.0] 

0.12 (0.01) 

[1.0] 

0.08 (0.01) 

[2.5] 

0.08 (0.01) 

[2.5] 

corel16k 

0.13 (0.00) 

[1.0] 

0.10 (0.01) 

[2.0] 

0.08 (0.01) 

[3.0] 

0.13 (0.00) 

[1.0] 

0.06 (0.00) 

[2.0] 

0.03 (0.01) 

[3.0] 

emotions 

0.50 (0.05) 

[3.0] 

0.55 (0.05) 

[2.0] 

0.58 (0.04) 

[1.0] 

0.50 (0.05) 

[3.0] 

0.57 (0.03) 

[1.0] 

0.56 (0.06) 

[2.0] 

flags 

0.60 (0.03) 

[3.0] 

0.61 (0.05) 

[1.5] 

0.61 (0.05) 

[1.5] 

0.60 (0.03) 

[3.0] 

0.61 (0.05) 

[1.5] 

0.61 (0.05) 

[1.5] 

scene 

0.67 (0.04) 

[3.0] 

0.71 (0.04) 

[1.0] 

0.69 (0.03) 

[2.0] 

0.67 (0.04) 

[3.0] 

0.72 (0.03) 

[1.0] 

0.70 (0.03) 

[2.0] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=70%M 

IG-LP  

|X’|=70%M 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=80%M 

IG-LP  

|X’|=80%M 

corel5k 

0.12 (0.01) 

[1.0] 

0.05 (0.01) 

[3.0] 

0.08 (0.01) 

[2.0] 

0.12 (0.01) 

[1.0] 

0.08 (0.01) 

[2.5] 

0.08 (0.02) 

[2.5] 

corel16k 

0.13 (0.00) 

[1.0] 

0.03 (0.00) 

[2.5] 

0.03 (0.00) 

[2.5] 

0.13 (0.00) 

[1.0] 

0.03 (0.01) 

[3.0] 

0.04 (0.01) 

[2.0] 

emotions 

0.50 (0.05) 

[3.0] 

0.57 (0.04) 

[1.0] 

0.56 (0.05) 

[2.0] 

0.50 (0.05) 

[3.0] 

0.57 (0.03) 

[1.0] 

0.55 (0.03) 

[2.0] 

flags 

0.60 (0.03) 

[2.0] 

0.60 (0.04) 

[2.0] 

0.60 (0.04) 

[2.0] 

0.60 (0.03) 

[1.5] 

0.58 (0.04) 

[3.0] 

0.60 (0.04) 

[1.5] 

scene 

0.67 (0.04) 

[3.0] 

0.71 (0.03) 

[1.5] 

0.71 (0.02) 

[1.5] 

0.67 (0.04) 

[3.0] 

0.71 (0.03) 

[1.5] 

0.71 (0.02) 

[1.5] 

dataset 

CFS-LP  

|X’|=h%M 

RF-LP  

|X’|=90%M 

IG-LP  

|X’|=90%M  baseline 

corel5k 

0.12 (0.01) 

[1.0] 

0.09 (0.01) 

[2.5] 

0.09 (0.01) 

[2.5]  0.11 (0.01) 

corel16k 

0.13 (0.00) 

[1.0] 

0.05 (0.00) 

[2.5] 

0.05 (0.00) 

[2.5]  0.10 (0.01) 

emotions 

0.50 (0.05) 

[3.0] 

0.56 (0.04) 

[1.5] 

0.56 (0.05) 

[1.5]  0.55 (0.05) 

flags 

0.60 (0.03) 

[1.0] 

0.58 (0.05) 

[2.0] 

0.57 (0.04) 

[3.0]  0.58 (0.04) 



16  

scene 

0.67 (0.04) 

[3.0] 

0.71 (0.02) 

[1.5] 

0.71 (0.02) 

[1.5]  0.72 (0.02) 
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