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Abstract

Inductive-learning algorithms induce a concept description from given concept in-
stances — training examples. However, if the provided features for describing the
training examples are inadequate, the learning algorithms are likely to produce inac-
curate descriptions. Features can sometimes be considered inadequate for the learn-
ing task when they are weakly or indirectly relevant or inappropriately measured.
However, these features can sometimes be combined conveniently, generating new
constructed features that can turn out to be highly relevant. This work describes
empirical results using Knowledge-driven constructive induction which is based on
domain knowledge provided by an expert, aiming to construct new features that pro-
duce more accurate descriptions. Several experiments performed on four real world
datasets using C4.5rules and CN2 as inducers are described. The reported results
include, for each experiment, a description of the new features constructed, error
rates and features selected by each inducer.
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1 Introduction

Conventional inductive-learning algorithms rely on existing (user) provided data to build their
descriptions. Inadequate representation space or description language as well as errors in training
examples can make learning problems be difficult.

Features can be considered inadequate for the learning task when they are weakly or indi-
rectly relevant, conditionally relevant or inappropriately measured (Lee, 1999; Baranauskas and
Monard, 1999; Baranauskas et al., 1999). If the provided features for describing the training
examples are inadequate, the learning algorithms are likely to create excessively complex and
inaccurate descriptions (Bloedorn and Michalski, 1998).

However, these individually inadequate features can sometimes be combined conveniently, gen-
erating new features which can turn out to be highly representative to the description of a
concept. The process of constructing new features is called Feature Construction or Construc-
tive Induction (Michalski, 1978).

The objective of this work is to evaluate the effects of Feature Construction when this is done
with the aid of the user/specialist. We describe a series of experiments performed on four real
world datasets, using two inducers: C4.5-rules and CN2. The reported results include, for each
experiment, a description of the new features constructed, error rates, features selected by each
inducer and others.

This work is organized as follows: Section 2 gives some background about Feature Construction.
Section 3 briefly describes the induction algorithms used in the experiments and Section 4 gives
a short description of the datasets used to run the algorithms. Section 5 shows the experimental
setup used to run the experiments and Section 6 describes the results obtained from these
experiments. Section 7 presents some considerations of results. Finally, Section 8 gives some
conclusions.

2 Constructive Induction

Feature construction, also known as Constructive Induction — CI, is the process of combining
primitive! features producing new features possibly relevant to a concept description. In other
words, CI can be defined as:

The application of constructive operators, i.e. operators used to compound features
from the existing ones, resulting in the definition of one or more features.

It is important to notice that, unlikely feature subset selection where only selected features
are shown to the inductive algorithm, thus decreasing feature search space (Lee et al., 1999;
Baranauskas and Monard, 1999; Baranauskas et al., 1999), Constructive Induction augments
feature search space.

Feature construction requires answers to the following questions:

Which constructive operators should be used? and

Which primitive features should be combined using this operators?

Another important observation is that, in general, the feature construction process is intractable
since the number of features which can be constructed is a combinatorial function of the number

!Features in the original dataset.



of existing features multiplied by the number of possible operators. Consequently, CI is feasible
only when articulated with heuristes that may reduce the number of possible features and the
number of constructive operators which are going to be used to construct new features.

2.1 Constructive Induction Approaches

Constructive Induction methods can be grouped according to the information used to search for
the best representation space as follows (Bloedorn and Michalski, 1998; Wnek and Michalski,
1994; Wnek and Michalski, 1993):

1. data-driven constructive induction, based on analysis of the training data

2. hypothesis-driven constructive induction, based on analysis of inductive hypothesis.
In this approach, useful concepts in the rules can be extracted and used to define new
attributes

3. knowledge-driven constructive induction, based on domain knowledge provided by an
expert and

4. multistrategy constructive induction, which uses two or more of the other methods.

The feature construction process can be guided and controlled by the user/specialist or can
be automatically conducted by the learning system. In this work, we focus on Constructive
Induction guided by user/specialist using thus the knowledge-driven approach.

2.2 An Example

The classical example of friend and enemy robots is given to illustrate feature construction. In
this example, features Head, Body, Holds and Smiles are used to determine if a robot is a friend
or an enemy. Table 2.1 shows the training examples.

FExamples Head Body Smiles | Holds Class
FE1 square square yes balloon | friend
Fs square | triangle no sword | enemy
Fs3 circle circle yes flag friend
FEy triangle circle yes sword | enemy
FEs triangle | triangle yes balloon | friend
Fs circle square no flag enemy

Table 2.1: Examples of Friend and Enemy Robots

After constructing the decision tree using these training examples, it can be observed that 2 of
the 4 features are used to generate the tree, thus constructing a tree of depth 2 — Figure 2.1.

Suppose that a new feature named Same-form is constructed from the comparison between
feature values Head and Body (primitive features) — see Table 2.2.

Examples Head Body Smiles | Holds | Same-form | Class
FE1 square square yes balloon true friend
Fo square | triangle no sword false enemy
Fs circle circle yes flag true friend
FEy triangle circle yes sword false enemy
Fs triangle | triangle yes balloon true friend
Fs circle square no flag false enemy

Table 2.2: Examples of Friend and Enemy Robots after Feature Construction
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Holds I Enemz I

sword balloon
flag
Enemz I Friend I

Figure 2.1: Decision Tree for the Problem of Friend and Enemy Robots

Now, it is possible to distinguish among friend and enemy robots using only this new feature.
This is illustrated by the decision tree shown in Figure 2.2, which has been generated using the
examples in Table 2.2. This decision tree states that a robot is a friend only if both its body
and head have the same form. Thus, none of the primitive features were explicitly needed to
induce a much simpler concept.

Same-form I

Friend I Enemz I

Figure 2.2: Decision Tree for the Problem of Friend and Enemy Robot after Feature Construction

The next section describes the inducers and the input data format used to run the knowledge-
driven constructive induction experiments.

3 Inducers

Two inducers, CN'2 and C4.5rules, found in the MLC++ library (Kohavi et al., 1996), have been
used in this work.

These inducers are well known in the ML community and belong to the eager learning approach.
In this approach, the algorithms greedily compile the training data into an intentional concept
description, such as a rule set or decision tree, discarding the data after this process (Aha, 1997).
Only the learned concept is used to classify new cases.



3.1 Data Format

In supervised Machine Learning, it is generally presented to an inducer a set of training instances.
Each instance is described typically by a vector of feature values and a class label whose value
can be either discrete or continuous. This vector is denoted by (X,Y) and is known as the
feature-value (either attribute-value or spreadsheet) format.

Table 3.1.1 illustrates this organization where a row ¢ refers to the i-th example or instance X;
and column entries x;; refer to the individual value of the j-th feature f; of instance i. The
column rotulated as class refers to the label or classification of that instance.

f1 fg e fm class
T 12 .- Tim Y1
ro1 T2 ... Tom Y2
Inl ITn2 ... Tnm Yn

Table 3.1.1: Feature-Value or Spreadsheet Format

The datasets file formats that MLC++ recognizes by default are the data, test and names files.
The data and test files contain labeled instances, one per line, of the training and test set
respectively. The names file defines the scheme that allows parsing these two previous files; it
describes the name and domain for each attribute and the label. The accuracy of the classifier
produced by the inducer is measured on unseen data, i.e. the test set. More details can be
found in (Kohavi et al., 1994; Felix et al., 1998; Baranauskas and Monard, 2000a).

3.2 (C4.5-rules

C4.5-rules (Quinlan, 1993) examines the original decision tree produced by C4.5% and derives
from it a set of rules of the form L — R. The left-hand side L is a conjunction of attribute-based
tests and the right-hand side is a class. One of the classes is also designated as a default.

To classify a case using a production rule model, the ordered list of rules is examined to find the
first whose left-hand side is satisfied by the case. The predicted class is then the one nominated
by the right-hand side of this rule. If no rule’s left-hand side is satisfied, the case is predicted
as belonging to the default class.

It is important to note that C4.5-rules does not simply rewrite the tree to a collection of rules.
In fact, it generalizes the rules by deleting superfluous conditions — i.e. irrelevant conditions
that do not affect the conclusion — without affecting its accuracy, leaving the more appealing
rules.

3.3 CN2

CN2 (Clark and Niblett, 1987; Clark and Niblett, 1989; Clark and Boswell, 1991) is a Machine
Learning algorithm that induces ‘if <complex> then <class>’ rules in domains where there
might be noise. Each <complex> is a disjunction of conjunctions.

To classify a new instance using induced unordered rules (default CA'2 rule generation), all rules
are tried and those which fire are collected. If more than one class is predicted by fired rules,
the method used is to tag each rule with the distribution of covered examples among classes and

2C4.5 (Quinlan, 1993) is one of the ID3 (Quinlan, 1986) successors. ID3 is a member of a more general Machine
Learning family named Top Down Induction of Decision Trees — TDIDT.



then to sum these distributions to find the most probable class. For instance, consider the three
rules:

if Smiles=yes and Holds=sword then class=enemy covers [15,1]
if Head=square and Body=square then class=friend covers [11,5]
if Smiles=no then class=enemy covers [0,2]

Here the two classes are [friend,enemy] and the first showed rule [15,1] denotes that the rule
covers 15 training instances of friend and 1 of enemy. The second [11,5] denotes that the rule
covers 11 training instances of friend and 5 of enemy. The third rule denotes that the rule covers
(0 training instances of friend and 2 of enemy.

Given a new instance of a robot which has square head, square body, smiles and holds a sword,
the first two rules are fired. CA/2 resolve this clash by summing the covered instances [36,6] and
then predicting the most common class in the sum — friend.

In (Baranauskas and Monard, 2000b) a more detailed description of both algorithms can be
found.

4 Datasets

Experiments were conducted on four real world domains. Datasets pima, cmc and hepatitis are
from the UCI Irvine Repository (Blake et al., 1998). The smoke dataset can be obtained from:
http://lib.stat.cmu.edu/datasets/csb/.

These four datasets were chosen from a set of nine datasets of a previous work in which the
wrapper and filter approaches for feature subset selection were compared (Lee et al., 1999). The
criterion used to choose these four datasets is related to our user/specialist domain knowledge
since we are interested in his/her assistance to construct new features.

Section 4.2 summarizes datasets characteristics. It follows a basic datasets description.

4.1 General Description

Pima This dataset was donated by V. Sigillito, Applied Physics Laboratory, Johns Hopkins
University to the UCI repository. This dataset is also a subset of a larger database main-
tained by the National Institute of Diabetes and Digestive and Kidney Diseases.

All patients are females at least 21 years old of Pima Indian heritage living near Phoenix,
Arizona, USA. The problem is to predict whether a patient would test positive for diabetes
according to World Health Organization (WHO) criteria — i.e., if the 2-hour post-load
plasma glucose is at least 200 mg/dl at any survey examination or if found during routine
medical care — given a number of physiological measurements and medical test results.

CMC This dataset is composed by a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey and was donated by Tjen-Sien Lim. The samples are married women
who were either not pregnant or do not know if they were at the time of the interview.
The problem is to predict the current contraceptive method choice (no use, long-term
methods or short-term methods) of a woman based on her demographic and socioeconomic
characteristics. There are 1473 instances, 3 classes and 9 attributes.

Smoke This survey dataset (Bull, 1994) is concerned with the problem of predicting attitude
toward restrictions on smoking in the workplace (prohibited, restricted or unrestricted)
based on by-law-related, smoking-related and sociodemographic covariates. It is composed
by 3 classes, 13 attributes and 2855 instances.



Hepatitis This dataset is for predicting life expectation of patients with hepatitis.

4.2 Datasets Summary

Table 4.2.1 summarizes the datasets used in this work. It shows, for each dataset, the number
of instances (#Instances), number and percentage of duplicate (appearing more than once) or
conflicting (same attribute-value but different class) instances, number of features (#Features)
continuous and nominal, class distribution, the majority error and if the dataset have at least
one missing value?.

Datasets are presented in ascending order of the number of features, as will be in the remaining
tables and graphs. Figure 4.1 shows datasets dimensionality, 7.e. number of features and number
of instances of each dataset. Observe that due to large variation, the number of instances in
Figure 4.1 is represented as log;q(#Instances).

Dataset # Instances #Duplicate or # Features Class Class % Majority Missing
conflicting (%) [ (cont.,nom.) Error Values
pima 760 T (0.13%) 8 (3.0) 0 65.00% | 34.95% N
1 34.98% on value 0
cme 1473 115 (7.81%) 92 i 12.70% 57.30% N
2 22.61% on value 1
3 34.69%
smoke 2855 29 (1.02%) 13 (2.10) 0 520% | 3047% N
1 25.18% on value 2
2 69.53%
hepatitis 155 0 (0%) 19 (6,13) die  2065% | 20.65% Y
live 79.35% | on value live

Table 4.2.1: Datasets Summary Descriptions

5 Experimental Setup

A series of experiments were performed, in order to evaluate the effectiveness of the new con-
structed features, using the algorithms and datasets described respectively in Section 3 and 4.
It is important to observe that the original data has not been preprocessed in any way, for ex-
ample by removing or replacing missing values or transforming nominal to numerical attributes.
Furthermore, each individual inducer was run with default options setting for all parameters,
i.€. no attempt was made to tune any inducer.

The user, consulted for the construction of new features for datasets pima and hepatitis, is a
specialist in the domain. He also gave some suggestions about dataset pima. New features for
datasets pima and smoke were constructed with the aid of a regular user.

The performed experiments can be divided into the following three steps — Figure 5.1:

e First step: After analyzing each dataset, the user/specialist suggested the construction
of only one new feature (f1) for dataset hepatitis and the construction of two new features
(f1 and f2) for the remaining datasets. Each original dataset was then augmented with the
new features, constructing, for the four datasets considered, ten datasets named as shown
in Table 5.1.

3These information is given by the MLC++ info utility
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Figure 4.1: Datasets Dimensionality

Original Dataset | Augmented Datasets

fl 2 f1,f2
pima pima01 pima02 pima-mlc
cmce cmc01 cmc02 cme-mlc
smoke smoke01 smoke02  smoke-mlc
hepatitis hepatiti0l — —

Table 5.1: Original Datasets Augmented with Constructed Features

For example, dataset pima0l contains all features from the original dataset augmented with
features f1; pima02 contains all features from original dataset augmented with feature f2
and pima-mlc contains all features from the original dataset augmented with features f1

and 2.

Afterwards, C4.5rules and CA/2 were run once using as training set all examples in each of
these ten new datasets. From now on the idea is to consider, for further investigation, only
datasets which have generated rules where the new features f1 and/or f2 are mentioned,
since this is an indication that these new constructed features are relevant to represent the
concept.

In our experiments, as the rules induced by C4.5rules and CAN2 used features f1 and f2 for
all datasets, no one of them was discarded.

Second step: Next, the two inducers C4.5rules and CN'2 were run on each dataset —
Table 5.1 — and the error rate was measured using 10-fold stratified cross-validation.
After this, we selected for the next step only the datasets that verify the two following
conditions:



— accuracies improved comparing to the original datasets accuracies measured using
10-fold stratified cross-validation — SCV — and

— at least one of the new constructed features was selected by the two inducers.

e Third step: Finally, for each dataset selected for this step, the primitive features used to
construct the new features were removed from the dataset. Afterwards, the two inducers
were run on these reduced datasets and error rate was measured using 10-fold stratified
cross-validation.

For example, considering dataset pima0l, which contains all features from the original
dataset pima augmented with feature f1; in this case, the two primitive features used to
create feature fl were removed. Similarly, for pima02, the two primitive features used to
create f2 were removed. Finally, for pima-mlc features used to create f1 were removed
as well as the ones used to create feature f2. Note that in this specific case only three
primitive features were removed, since one of the primitive features used to construct the
new features f1 and f2 was common to both.

Considering this whole process as a general methodology for applying Constructive Induction,
the idea of running the third step was to verify if the considered algorithms could have a better
performance if the primitive features used to construct the new features of each dataset were
removed. Two reasons would be pointed out to do so:

e the new features are constructed from primitive features and some of these new features
were selected by the inducers.

e most of Machine Learning algorithms, that are computationally feasible, do not work well
or may be confused in the presence of a large number of features.

The perfect situation would be when the primitive features, used to construct the new ones, are
not selected during the first step by the two inducers C4.5rules and CA/2. In our experiments
this was not the case, since the primitive features used to construct the new ones were also
selected by the inducers. A possible reason for this would be that the constructed features do
not capture perfectly the information embedded in each individual feature. Another reason for
this would be that the datasets used in this work have already been worked out, so that the
original features are, on its own, the most relevant ones.

6 Experimental Results

In this section the experimental results obtained are presented is detail.

6.1 Summary Tables Description
Six tables are presented for each original dataset:

e The first table describes each feature: feature number (features numbering starts at zero),
feature name and type (continuous or nominal) in the original dataset. The last rows
refer to the new features constructed which are indicated by new(#feature), f1(name) and
f2(name). For nominal features, the maximum possible number of values (as described
in the names file) and the actual number of values (the ones really found in the dataset
through the MLC++ info utility) are shown. It should be observed that a number of actual
nominal values greater than the possible number of values indicates that there are missing
values for that specific attribute. The reverse is not true.
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Figure 5.1: Experiments Steps

e The second table shows the features, original and constructed, for each dataset. Note

again that constructed features are indicated by new(#feature).

The third table describes the features selected by C4.5rules and CA2 inducers from the orig-
inal dataset as well as features selected by these inducers after Constructive Induction, 7.e.
the augmented datasets. To specify the experiment, the notation (set-of-features,inducer)
is used where:

— set-of-features € {ori-all, ci-all, ci-new}. ori-all indicates that all features from the
original dataset are being considered; ci-all indicates that all features from the original
dataset augmented with the constructed ones are being used and ci-new indicates that
the considered set of features are as ci-all but where the primitive features used to
create the new features have been removed.

— inducer € {C4.5rules, CN'2 } indicates the algorithm that has been used.

This table shows, for each original/augmented dataset and (set-of-features,inducer), the
features subset selected, the number of features in the selected subset (#F), proportion
of selected features (%F) as well as the time taken by the inducer to obtain the selected
features. Time (in seconds) is related to a standard Indigo 2 Silicon Graphics workstation.
This table also shows the number of duplicate or conflicting instances for each dataset.

For example, consider the first row for dataset pima in Table 6.2.3 (page 12):

— the first column indicates that the subset of features — ori-all — given to C4.5rules
is the one compounded by all features from the original dataset

— the second column presents the subset of features extracted by the correspondent
inducer, i.e. those features that were present in the rules generated by the inducer



— the third column shows the total number of features in the dataset pima

— the fourth column shows the number of features used by the inducer to express the
concept

— the fifth column presents the proportion of selected features
— the sixth column gives the time taken by C4.5rules to induce the rules

— the seventh column presents the number of duplicate or conflicting instances for the
dataset pima

The second row for dataset pima shows the same information, but using CA2 as inducer.

In the same way, the first row for dataset pima-mlc shows similar information when given
to C4.5rules the subset of features — ci-all, i.e. all features from the original dataset
augmented with the two new constructed features f1 and f2. The second row for dataset
pima-mlc shows the same information as the first one, but using CN'2 as inducer. The third
row presents the selected features, total number of features, number of selected features,
proportion, time and number of duplicate or conflicting instances using C4.5rules given the
subset of features — ci-new, i.e. the considered set of features are as ci-all but having the
primitive features used to create the new features removed.

The fourth table shows similar information than the third one, but in a different way
such that it is easy to visualize common features used by every (set-of-features,inducer).
Note that features presented as e are features generated by Constructive Induction. The
C4.5rules inducer is represented as C4.5r.

The fifth table shows the error rate of each inducer (mean and standard deviation) using
10-fold stratified cross-validation (10-strat-cv) for each case described in Table 5.1 (page 7).
The first column indicates the set of features given to the inducers; the second and third
column indicate errors using C4.5rules and CA/2 as inducers. For instance, the row ori-all
shows errors when given the original set of features to the two inducers.

The sixth table presents the difference in standard deviations errors (obtained from 10-
stratified-cross-validation) between the original dataset and the derived datasets. This
information is used to select the datasets to be considered in the third step.

Datasets marked with “—” are the ones not considered in the third step. As stated earlier, only
the datasets that verify the following both conditions were selected for the third step:

e accuracy improved comparing to the original dataset accuracy and

e at least one of the new constructed features were selected by the two inducers.

For example, the dataset pima-mlc was not chosen for the third step — see page 12 — since it
does not fill both conditions.

6.2 Pima and Derived Datasets

Two new features were constructed for this dataset with the help of the specialist. Their struc-
ture is shown bellow.

o f1(New-fc01): this features verifies if glucose and diastolic blood preassure are out of normal
levels. It combines two primitive features: plasma and diastolic.

10



if (plasma>145 and diastolic>90) then new-fcO1=1 % glucose and diastolic blood
% preassure are out of normal
% levels

else new-£c01=0

o f2(New-fc02): this feature verifies if glucose is out of the normal level and if 2-hour serum

insulin is not present. It combines two primitive features: plasma and two.

if (plasma>145 and two=0) then new-fc02=1

% present

else new-fc02=0

% glucose is not at a normal level

% and 2-hour serum insulin is not

Feature | Feature #Distinct Values
Number | Name possible actual type
#0 | Number - 17  continuous
#1 | Plasma - 136  continuous
#2 | Diastolic - 47  continuous
#3 | Triceps - 51  continuous
#4 | Two - 186  continuous
#5 | Body - 248  continuous
#6 | Diabetes - 517  continuous
#7 | Age - 52  continuous
new#8 | fl(New-fc01) - 2 nominal
new#9 | f2(New-fc02) - 2  nominal

Table 6.2.1: Pima and Derived Datasets — Feature Description

Feature
Number

Datasets

pima

pima-mlc

pima01l

pima02

#
#
#
#
#
#
#
#
new#
new#

0 o
1
2
3
4
5
6
7
8
9

G000 000

< <

SO0
OO0 000

COOOOO 00

<

Table 6.2.2: Pima and Derived Datasets — Original and Constructed Fea-

tures

Selected Features | Total # F | # Selected F %F | Time (s) #Duplicate or
Conflicting Instances

pima
(ori-all,C4.5-rules) 12567 8 5 62.50 0.2 1
(ori-all,CN2) 01234567 8 8 | 100.00 3.8
pima-mlc
(ci-all,C4.5-rules) 124567 10 6 60.00 1.8
(ci-all,CN2) 012345679 10 9 90.00 4.7
(ci-new,C4.5-rules) — — — — — 1
(ci-new,CN2) — — — — — 1
4.4
pima0Ol
(ci-all,C4.5-rules) 125678 9 6 66.67 1.8
(ci-all,CN2) 1234567 9 7 77.78 4.7
(ci-new,C4.5-rules) 045678 7 6 85.71 0.7 1
(ci-new,CN2) 0345678 7 6 85.71 5.1

continued on next page
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Selected Features | Total # F [ # Selected I %F | Time (s) #Duplicate or
Conflicting Instances
pima02
(ci~all,C4.5-rules) 1245679 9 7 77.78 1.9
(ci-all,CN2) 012345679 9 9 | 100.00 4.8
(ci-new,C4.5-rules) — — — — — 1
(ci-new,CN2) — — — — —
Table 6.2.3: Pima and Derived Datasets — Selected Features, Time for Se-
lecting Features and Number of Duplicate or Conflicting Instances
Dataset pima pima-mlc pima0l pima02
Feature (ori-all, (ori-all, (ci-all, (ci-all, (ci-new, (ci-new, (ci-all, (ci-all, (ci-new, (ci-new, (ci-all, (ci-all, (ci-new, (ci-new,
Number ca.5r) CN2) | c4.51) CN2) C4.5r)  CN2) C4.5r) CN2) C4.51) CN2) C4.5r) CN'2) C4.5r) CN?2)
#0 o o o o o o — —
#1 o o o o o o o o — —
#2 o o o o o o o o
#3 o o o o o o o
#4 o o o o o o o o — —
#5 o o o o o o o o o o o o
#6 o o o o o o o o o o o o — —
F#T o o o o o o o o o o o o
#8 . D . ° * — —
#9 ° ° ° ° Py — —
# Selected 5 8 6 9 6 7 6 8 6 6 7 9
F
Total 8 8 10 10 7 7 9 9 7 7 9 9
#F
% F 62.50% 100% 60.00% 90.00% 85.71% 100% 66.67% 88.89% 85.71% 85.71% 77.78% 100%

Table 6.2.4: Pima Before and After Constructive Induction — Selected Fea-

tures

| C4.5rules

[ CN2

pima 10-strat-cv

ori-all | 26,00+1,03 | 25,38+1,38

pima-mlc 10-strat-cv

ci-all 26,274+0,83 | 25,51+1,68
ci-new | 26,78+1,88 [ 28,63+1,35
pima0l 10-strat-cv

ci-all 25,61+1,12 | 25,9041,15
ci-new | 31,73£1,37 | 32,66+1,33
pima02 10-strat-cv

ci-all 26,524+1,14 | 25,77+£1,33
ci-new | — —

Table 6.2.5: Pima and Derived Datasets — Error Rate

[ C45rules | CN2
pima-mlc
ci-all 0,29 0,08
ci-new 0,51 2,38
pima0l
ci-all -0,36 0,41
ci-new 4,73 5,37
pima02
ci-all 0,48 0,29
ci-new — —

Table 6.2.6: Difference in Standard Deviations Between Original Dataset
Pima and Derived Datasets
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6.3 Cmc and Derived Datasets

Two new features were constructed for this dataset with the help of the user. Their structure is
shown bellow.

o f1(Same-edu): this feature shows how equal or different the educational level of wife and
husband are. It combines two primitive features: wedu and hedu.

if (wedu=hedu) then same-edu=exactly-same % wife and husband have
% the same educational
% level
else if (wedu-hedu=1) then same-edu=almost-wedu % wife’s educational
% level is higher
else if (wedu-hedu=-1) then same-edu=almost-hedu % husband’s educational
% level is higher
else if (wedu-hedu=2) then same-edu=wwedu % wife’s educ. level is
% two levels higher
else if (wedu-hedu=-2) then same-edu=hhedu % husband’s educ. level

% is two levels higher
else if (wedu-hedu=3) then same-edu=wedu-highery, wife’s educ. level
% is much more higher
else same—edu=hedu-higher % husband’s educ. level
% is much more higher

o f2(Same-wedu-std): this feature shows if wife has a standard of living compatible with her
educational level. It combines two primitive features: wedu and stdliv.

if (wedu=stdliv) then same-wedu-std=1 Y, wife has a standard of living compatible
% with her educational level
else same-wedu-std=0 % standard of living is not the same level of
% the eduactional level

Feature | Feature #Distinct Values
Number | Name possible  actual  type
#0 | Wage - 34  continuous
#1 | Wedu - 4 nominal
#2 | Hedu - 4 nominal
#3 | Nchi - 15  continuous
#4 | Wrel - 2  nominal
#5 | Work - 2 nominal
#6 | Hocu - 4 nominal
#7 | Stdliv - 4 nominal
#8 | Medexp - 2  nominal
new#9 | fl(Same-edu) - 7  Nominal
new#10 | f2(Same-wedu-std) - 2 Nominal

Table 6.3.1: Cmc and Derived Datasets — Feature Description

Feature Datasets

Number | cmc | ecme-mlc | ecmcOl | ecmc02
#0 S S o o
#1 3 3
#2 o o © ©
#3 o o 3 o
#4 o o © ©
#5 o o 3 o
#6 o o © ©

continued on next page
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Feature Datasets
Number | cmc | cme-mlec | emc01 | e¢mc02
#7 o o 3 o
#8 o o © ©
new#9 o <o
new#10 o ©

Table 6.3.2: Cmc and Derived Datasets — Original and Constructed Features

Selected Features | Total # F | # Selected F %F | Time (s) #Duplicate or
Conflicting Instances
cmc
(ori-all,C4.5-rules) 012345678 9 9 [ 100.00 13.5 115
(ori-all,CN2) 012345678 9 9 | 100.00 17.1
cmc-mlc
(ci-all,C4.5-rules) 012345678 11 9 81.82 16.6
(ci-all,CN2) 012345678910 11 11 | 100.00 20.1
(ci-new,C4.5-rules) — — — — 115
(ci-new,CN'2) — — — — —
cmc01
(ci~all,C4.5-rules) 012345678 10 9 90.00 16.1
(ci-all,CN2) 0123456789 10 10 | 100.00 20.8
(ci-new,C4.5-rules) 03456789 8 8 | 100.00 10.6 167
(ci-new,CN2) 03456789 8 8 | 100.00 18.0
cmc02
(ci-all,C4.5-rules) 01234567810 10 10 | 100.00 16.6
(ci-all,CN2) 01234567810 10 10 | 100.00 20.1
(ci-new,C4.5-rules) 023456810 8 8 | 100.00 8.4 240
(ci-new,CN2) 023456810 8 8 | 100.00 16.6

Table 6.3.3: Cmc and Derived Datasets — Selected Features, Time for Se-

lecting Features and Number of Duplicate or Conflicting Instances

Dataset cmec cmec-mlc cmc01 cmc02
Feature (ori-all, (ori-all, (ci-all, (ci-all, (ci-new, (ci-new, (ci-all, (ci-all, (ci-new, (ci-new, | (ci-all, (ci-all, (ci-new, (ci-new,
Number C4.5r)  CN2) C4.5r) CN2) C4.5r) CN2) C4.5r) CN2) C4.5r) CN'2) C4.5r) CN'2) C4.5r) CN2)
#0 o o o o — — o o o o o o o o
#1 o o o o — — o o o o
#2 o o o o — — o o o o o o
#3 o o o o — — o o o o o o o o
#4 o o o o — — o o o o o o o o
#5 o o o o — — o o o o o o o o
#6 o o o o o o o o o o o o
#7 o o o o — — o o o o o o
#8 o o o o o o o o o o o o
#9 o — — . o .
#10 . . . . .
# Selected 9 9 9 11 9 10 8 8 10 10 8 8
F
Total 9 9 11 11 10 10 8 8 10 10 8 8
# F
% F 100% 100% 81.82% 100% 90.00% 100% 100% 100% 100% 100% 100% 100%

Table 6.3.4: Cmc Before and After Constructive Induction — Selected Fea-

tures

| C4.5rules

[ CN2

cmc 10-strat-cv

ori-all | 4590+1,38 | 49,64+1,01

cme-mlc 10-strat-cv

ci-all 46,98+1,36 | 50,37+1,06
ci-new | — —

cmc01 10-strat-cv

ci-all 47,87+1,54 | 49,50+1,04
ci-new | 47,86+£0,84 | 51,874+0,84

continued on next page
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[ C45rules | CN2

cmc02 10-strat-cv

ciall | 46,37+0,07 | 52,22£1,09
ci-new | 47,73+0,88 | 52,6141,29

Table 6.3.5: Cmc and Derived Datasets — Error Rate

[ C45-rules [ CN2

cme-mlc

ci-all 0,45 0,14
ci-new — —
cmc01

ci-all 1,09 -0,68
ci-new 1,51 1,72
cmc02

ci-all -0,07 1,85
ci-new 1,35 2,02

Table 6.3.6: Difference in Standard Deviations Between Cmc and Derived

Datasets

6.4 Smoke and Derived Datasets

Two new features were constructed for this dataset with the help of the user. Their structure is

shown bellow.

o f1(Smoking): this feature represents the status of the interviewed person at the time of

survey. It combines four primitive features: smokingl, smoking2, smokings and smoking/.

if (smokingl=0 and smoking2=0 and smoking3=0) Y%

then smoking=never YA
else if (smokingl=1) yA
then smoking=current %

else if (smoking2=1) %
then smoking=quit <= 6 months %

h

else if (smoking3=1 and smokingéd=1) %

then smoking=quit 6-12 months 7%
else if (smoking3=1 and smoking4=0) 7
then smoking=quit > 12 months %
else smoking=not-defined %
% was found

smokingl, smoking2 and smoking3
= 0 indicate that has never
smoked

indicates that the interviewed
person is a current smoker
indicates that the interviewed
person has quit smoking less (or
equal) than 6 months ago
interviewed person has quit from
smoking 6 to 12 months ago
interviewed person has quit
smoking more than one year ago
some inconsistency in data

e f1(Place): this feature shows a comparison between the place the interviewed person works
with respect to the city of Toronto-Canada (workl), if he (she) works at home or not
(work2) and if he (she) lives in the city of Toronto or outside it (residence). It combines
three primitive features: workl, work2 and residence.

if (workl=work2) then place=0
else if (workl=residence) then place=1

else place=2

15

% work place city is the same as
% work place home

% work place city is the same as
% residence



Feature | Feature #Distinct Values
Number | Name possible actual type
#0 | Weight - 128  continuous
#1 | Time - 2 nominal
#2 | Workl - 2 nominal
#3 | Work2 - 2  nominal
#4 | Residence - 2 nominal
#5 | Smokingl - 2 nominal
#6 | Smoking2 - 2  nominal
#7 | Smoking3 - 2 nominal
#8 | Smoking4 - 2 nominal
#9 | Knowledge - 13  nominal
#10 | Sex - 2  nominal
#11 | Age - 73  continuous
#12 | Education - 5 nominal
new#13 | f1(Smoking) - 5  nominal
new#14 | f2(Place) - 3 nominal

Table 6.4.1: Smoke and Derived Datasets — Feature Description

Feature

Datasets

Number

smoke

smoke-mlc

smokeO1

smoke02

#0

#11
#12
new#13
new#14

<

SO OO0OOOOOOO 0

<

LR R R I SR R IR G IR IR I I SRR oIV

<

GO0 O0

SO0 OO0 OO

<

Table 6.4.2: Smoke and Derived Datasets — Original and Constructed Fea-

tures

Selected Features | Total # F | # Selected F %F | Time (s) #Duplicate or
Conflicting Instances
smoke
(ori-all,C4.5-rules) 01234568910 13 12 92.31 68.1 29
11 12
(ori-all,CN2) 012345678910 13 13 | 100.00 57.4
1112
smoke-mlc
(ci-all,C4.5-rules) 012345678910
111213 14 15 15 | 100.00 64.6
(ci-all,CN2) 012345678910
111213 14 15 15 | 100.00 84.7
(ci-new,C4.5-rules) 0191011121314 8 8 | 100.00 58.4 41
(ci-new,CN2) 0191011121314 8 8 | 100.00 67.3
smoke01
(ci-all,C4.5-rules) 012345678910 14 13 92.86 64.8
11 12
(ci-all,CN2) 012345678910
11 12 13 14 14 | 100.00 84.7
(ci-new,C4.5-rules) [ 012349101112 13 10 10 | 100.00 47.1 29
(ci-new,CN2) 01234910111213 10 10 | 100.00 65.8
smoke02
(ci-all,C4.5-rules) 012345678910
1112 14 14 14 | 100.00 65.2
(ci-all,CN2) 012345678910

continued on next page
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Selected Features | Total # F | # Selected F %F | Time (s) #Duplicate or
Conflicting Instances
1112 14 14 14 | 100.00 85.4
(ci-new,C4.5-rules) 01567891011 11 11 | 100.00 60.7 41
12 14
(ci-new,CN2) 01567891011 11 11 | 100.00 68.9
12 14

Table 6.4.3: Smoke and Derived Datasets — Selected Features, Time for
Selecting Features and Number of Duplicate or Conflicting Instances

Dataset smoke smoke-mlc smoke0l smoke02
Feature (ori-all, (ori-all, | (ci-all, (ci-all, (ci-new, (ci-new, (ci-all, (ci-all, (ci-new, (ci-new, | (ci-all, (ci-all, (ci-new, (ci-new,
Number C4.5r)  CN2) C4.5r) CN2) (C4.5r) CN2) C4.5r) CN2) (C4.5r) CN2) C4.5r) CN2) C4.5r) CN2)
#0 o o o o o o o o o o o o o o
#1 o o o o o o o o o o o o o o
#2 o o o o o o o o o o
#3 o o o o o o o o o o
#4 o o o o o o o o o o
#5 o o o o o o o o o o
#6 o o o o o o o o o o
#7 o o o o o o o o o
#8 o o o o o o o o o o
#9 o o o o o o o o o o o o o o
#10 o o o o o o o o o o o o o o
#11 o o o o o o o o o o o o o o
F#12 o o o o o o o o o o o o o o
#13 ° ° ° ° ° ° °
#14 ° ° ° ° ° ° ° °
# Selected 12 13 15 15 8 8 13 14 10 10 14 14 11 11
F
Total 13 13 15 15 8 8 14 14 10 10 14 14 11 11
# F
% F 92.31% 57.40% 100% 100%  100% 100% 92.86% 100% 100% 100% 100% 100% 100% 100%

tTa]%lse 6.4.4: Smoke Before and After Constructive Induction — Selected Fea-
ure

[ C45rules | CN2

smoke 10-strat-cv

ori-all | 32,7140,65 | 31,87£0,35
smoke-mlc 10-strat-cv

ci-all 32,584+0,46 | 31,59+0,50
ci-new | 32,72+0,38 | 32,0940,40
smoke01 10-strat-cv
ci-all 33,284+0,80 | 31,56+0,45
ci-new | 33,24+0,37 | 32,254+0,88
smoke02 10-strat-cv
ci-all 32,9340,49 | 31,49+0,45
ci-new | 32,37+0,46 | 31,56+0,46

Table 6.4.5: Smoke and Derived Datasets — Error Rate

[ C45rules | CN2

smoke-mlc

ci-all -0,23 -0,65
ci-new 0,02 0,59
smoke01

ci-all 0,78 -0,77
ci-new 1,00 0,57
smoke(02

ci-all 0,38 -0,94
ci-new -0,60 -0,76

Table 6.4.6: Difference in Standard Deviations Between Smoke and Derived
Datasets
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6.5 Hepatitis and Derived Datasets

One new feature was constructed for this dataset with the help of the specialist. Its structure
is shown bellow.

o f1(New-fc01): indicates if the pacient probably will live or die. It combines three primitive
features: liver-firm, ascites and varices.

if (liver-firm=yes and ascites=yes and varices=yes) % pacient has liver-firm,
% ascites and varices
then new-£c01=0 % probably will die
else new—fc0Ol=1 % probably will live
Feature | Feature #Distinct Values
Number | Name possible  actual  type
#0 | age - 49  continuous
#1 | female 2 2  nominal
#2 | steroid 2 3  nominal
#3 | antivirals 2 2  nominal
#4 | fatigue 2 3  nominal
#5 | malaise 2 3  nominal
#6 | anorexia 2 3 nominal
#7 | liver-big 2 3  nominal
#8 | liver-firm 2 3 nominal
#9 | spleen-palpable 2 3  nominal
#10 | spiders 2 3 nominal
#11 | ascites 2 3  nominal
#12 | varices 2 3  nominal
#13 | bilirubin - 34  continuous
#14 | alk-phosphate - 83  continuous
#15 | sgot - 84  continuous
#16 | albumin - 29  continuous
#17 | protime - 44  continuous
#18 | histology 2 2 nominal
new#19 | fl(new-fc01) - 2 nominal

Table 6.5.1: Hepatitis and Derived Datasets — Feature Description

Feature Datasets
Number | hepatitis | hepatitisO1
#0 S S
#1
#2
#3
#4

B
Ne)
FOE R I R R R IR IR R IR VIR SR R IR C IR o

#16
#17 3

continued on next page
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Feature Datasets

Number | hepatitis | hepatitisO1
#18 o o

new#19 o

Table 6.5.2: Hepatitis and Derived Datasets — Original and Constructed

Features

Selected Features | Total # F | # Selected F %F | Time (s) #Duplicate or
Conflicting Instances
hepatitis
(ori-all,C4.5-rules) 0134578101115 19 12 | 63.16 0.1 0
16 17
(ori-all,CN2) 19
hepatitisO1
(ci-all,C4.5-rules) 0145781011 20 10 | 50.00 0.9
15 16
(ci-all,CN2) 017101112131415
16 17 18 19 20 13 | 65.00 1.2
(ci-new,C4.5-rules) 2456791415 17 10 | 58.82 0.0 0
16 17
(ci-new,CN2) 047910131415 16 17 12 | 70.59 1.1
17 18 19

Table 6.5.3: Hepatitis and Derived Datasets — Selected Features, Time for
Selecting Features and Number of Duplicate or Conflicting Instances

Dataset hepatitis hepatitisO1
Feature (ori-all, (ori-all, (ci-all, (ci-all, (ci-new, (ci-new,
Number C4.5r) CN2) C4.5r) CN2) C4.5r) CN'2)
#0 o o o o
#1 o o o
#2 o
#3 o
#4 o o o o
#5 o o o
#6 o
F#T o o o o o
#8 o o
#9 o o
#10 o o o o
#11 o o o
#12 o
#13 o o
#14 o o o
#15 o o o o o
#16 o o o o o
#17 o o o o
#18 o o
#19 ° °
# Selected 12 10 13 10 12
F
Total 19 19 20 20 17 17
# F
% F 63.16% 50.00% 65.00% 58.82% 70.59%

Table 6.5.4: Hepatitis Before and After Constructive Induction — Selected

Features

[ C45rules ]

CN2

hepatiti 10-strat-cv

ori-all | 21,2942,99 [ 18,25+3,83

hepatitiOl 10-strat-cv

ci-all
ci-new

18,00+£3,74
25,83+3,33

17,50£2,04
17,5141,49

Table 6.5.5: Hepatitis and Derived Datasets — Error Rate
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[ C4.5rules | CN2

hepatitiOl
ci-all -0,97 -0,24
ci-new 1,43 -0,25

Table 6.5.6: Difference in Standard Deviations Between Hepatitis and De-
rived Datasets

7 Some Considerations

It is interesting to observe the numbers in the third table related to the column Duplicate or
Conflicting Instances of each dataset — Sections 6.2 to 6.5. Note that for datasets cmc and
smoke, in some cases these numbers changed (cmce: from 115 to 167 and 240; smoke: from 29
to 41) when the primitive features that were used to construct new features were removed.

In all cases considered, this number has grown up. A possible explanation for this is that the
removed primitive feature probably is the only feature that has different values for one or more
instances, and as a consequence of its removing, more instances became conflicting.

For example, consider the set of instances given by Table 7.7 were a new feature X,,¢q, defined
as:

if Xq = X3 then X,ep =True else X, =False

has been constructed.

Instances | X1 | Xo | X3 | X4 | Xpew | Class
L & | O | & | O | True +
I S| & | O | & | False +
I3 Ol S| Q| Q| True —
Iy Q ' ' & | False —

Table 7.7: Example of Duplicate or Conflicting Instances

Now, if we remove the primitive features that were used to construct this X, feature, the
obtained set of instances is given by Table 7.8.

Instances | Xo | X4 | Xnew | Class
Iy & | Q| True +
I & | & | False +
I3 & | Q| True -
1y & | & | False -

Table 7.8: Example of Duplicate or Conflicting Instances After Removing Primitive Features

Note that removing these two primitive features made instances I; and I3 become conflicting,
i.e. they both have the same values for all the features, but belong to different classes.

Table 7.9 presents a summary of the results obtained through the three steps performed in the
experiments reported in this work. This table shows, for each one of the ten augmented datasets,
the following information:

e A - the names of the datasets
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e B - total number of features in the dataset

e C - the numbers which identify the primitive features (PrimF') used to construct the new
one (NewF)

e D - features used by C4.5rules

e E - features used by CA/2

F - if all features of the dataset were selected

e G - if any of the new constructed features were selected

e H - if accuracies measured by 10-fold stratified cross-validation improved, using C4.5rules
and CN2 on the augmented datasets. If so, this is indicated by the inducer that had the

accuracies improved

e J -features used by CN?2 from the reduced datasets — Step 3

e K -if accuracies measured by 10-fold stratified cross-validation improved, using C4.5rules
and CN2 on the reduced datasets. If so, this is indicated by the inducer that had the

accuracies improved

I -features used by C4.5rules from the reduced datasets — Step 3

Note that features in underlined bold style correspond to the new constructed features.

As it

accuracies without the primitive features, which were used to compose the new constructed
features. These two datasets are:

1. smoke using f2(Place)
2. hepatitis using f1(New-fc01).

can be seen, at the end of the third step, only two datasets showed an improvement of

Step 1 Step 2 Step 3
A B C D E F G H I J K
NewF — PrimF
pima-mlc 10 3 1245 0123
8§ —12 67 45679
9— 14
pima0l 9 2 1256 1234 Yes C4.5rules 0456 0345
8 — 12 78 567 78 678
pima02 9 2 1245 0123 Yes Yes
9—14 679 4567
9
cmec-mlc 11 3 0123 0123 Yes Yes
9—12 4567 4567
10 -1 7 8 8910
cmc01 10 2 0123 0123 Yes CN2 0345 0345
9—12 4567 4567 6789 6789
8 89
cmc02 10 2 0123 0123 Yes Yes C4.5rules 0234 0234
10 —17 4567 4567 56810 56810
8 10 8 10
smoke-mlc 15 7 0123 0123 Yes Yes C4.5rules 01910 01910
13 —-5678 4567 4567 CN2 11 12 11 12
14 - 234 8910 8910 13 14 13 14
11 12 11 12
1314 | 1314
smoke01 14 4 0123 0123 Yes Yes CN2 0123 0123
13 —-5678 4567 4567 491011 491011
8910 8910 12 13 12 13
11 12 11 12 13
smoke02 14 3 0123 0123 Yes Yes CN2 0156 0156 C4.5rules
14 - 234 4567 4567 78910 78910 CN2
891011 891011 1112 14 1112 14
12 14 12 14
hepatitiOl 20 3 0145 01710 Yes Yes C4.5rules 2456 0479 CN?2
19 — 811 12 7810 111213 CN2 7914 10 13 14
11 15 16 14 15 16 15 16 17 15 16 17
17 18 19 18 19

Table 7.9: Results Summary
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A dataset showing an improvement of the accuracy at the end of the third step, means that
this dataset not only has a better performance using a new constructed feature, but also that
when the primitive features used to create this new feature were removed, the accuracy still
remained better than the one obtained using just the original set of features. Although there
were improvements in accuracy, the results would only fit into the perfect situation if during
the first step these primitive features, used to construct the new ones, were not selected by the
inducers. As said before, two possible reasons could be pointed out to justify this:

e the constructed features do not capture perfectly the information embedded in each indi-
vidual feature

e the datasets used in this work are such that the original features on its own are relevant
for learning.

Results summarized in Table 7.9 also show that, in almost all the cases considered in the third
step, features used by the inducers to express the learned concept are exactly all the given
features in this step, 7.e. the same ones used in the first step without the primitive features used
to create the new constructed ones. Only datasets pima0l and hepatitisO1 have a set of features
selected in the third step which are different from the first step for both inducers. Only for
C4.5rules, the dataset cmcOl has a set of features selected in the third step which are different
from the ones selected on the first step. This may indicate that the new constructed features,
in these two cases, played a more important role in the concept learning task.

Note that when the primitive features, that were used to create the new features, were removed,
the set of features selected by C4.5rules for pima0l has two different features: 0 and 4. Consider-
ing CN'2, during the first step, the new constructed feature was not used, but when the reduced
dataset was given to this same inducer, besides feature 8 (new constructed feature), CN2 also
selected feature 0.

For dataset cmc01, only C4.5rules showed a different set of features selected in the first step from
the set selected in the third step. In this case, the new constructed feature was not used in the
first step but only in the third one.

Finally, the only dataset that exhibited different sets of features from the first step to the third
one and an improvement in accuracies was the dataset hepatitisOl. For C4.5rules, in the third
step, the inducer used features 2, 9 and 17 that were not present in the first step. For CN'2, in
the third step, the inducer used features 4 and 9 that were not present in the first step.

Note that dataset smoke(2 has accuracy improved for both inducers given only the set of features
composed by the new constructed features and the primitive features that were not used to create
these new features.

8 Conclusions

This work shows some empirical results of Knowledge-driven Constructive Induction. The Con-
structive Induction approach is based on domain knowledge provided by a user/specialist; given
the primitive features of the original datasets, the user/specialist suggested freely the construc-
tion of some new features. Accuracy and the set of features selected were measured when given
different sets of features to the two inducers C4.5rules and CAN2. A feature is considered relevant
for the learning task if it is used by these algorithms to induce the rules.

Results show that, in spite of having a user /specialist help, it is difficult to construct new features
that are really relevant to learn the concept embedded in these datasets. It could be that the
original features of these datasets are relevant on its own to learn the concept.
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